Skip to main content
Log in

Glioma Cell Invasion: Regulation of Metalloproteinase Activity by TGF-β

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are a family of extracellular endopeptidases that selectively degrade components of the extracellular matrix. MMPs are implicated in tumor cell invasion because they mediate the breakdown of the basal membrane. In addition, they seem to be important for the creation and maintenance of a microenvironment that facilitates tumor cell survival. Among the essential characteristics of human malignant gliomas are infiltrative growth, angiogenesis and suppression of antitumor immune surveillance. Transforming growth factor-beta (TGF-β) is intimately involved in the regulation of these processes. We have previously demonstrated that TGF-β promotes the migration of LN-18 and LN-229 glioma cells via a process that may involve the upregulation of αVβ3 integrin expression. Furthermore, we have defined a novel pathway for hepatocyte growth factor (HGF)-induced glioma cell migration and invasion which requires the induction of TGF-β2 expression. Here, we demonstrate that TGF-β2 induces MMP-2 expression and suppresses tissue inhibitor of metalloproteinases (TIMP)-2 expression and that concentration-dependently promotes the invasion of U87MG and LN-229 glioma cells in a matrigel invasion assay. Similarly, ectopic expression of the anti-apoptotic BCL-xL protein leads to enhanced matrigel invasion by LN-18 and LN-229 glioma cells. We outline the possible interrelations of TGF-β, proteins of the BCL-2 family, integrins and metalloprotease activity. By virtue of its promotion of glioma invasion and its growth regulatory and immunomodulatory properties, TGF-β continues to be one of the most promising targets for the experimental therapy of human malignant glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weller M, Fontana A: The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Res Rev 21: 128, 1995

    Google Scholar 

  2. Deryugina EI, Bourdon MA, Luo GX, Reisfeld RA, Strongin A: Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci 110: 2473, 1997

    Google Scholar 

  3. Goldbrunner RH, Bernstein JJ, Tonn JC: ECM-mediated glioma cell invasion. Microsc Res Tech 43: 250, 1998

    Google Scholar 

  4. Wick W, Wagner S, Kerkau S, Dichgans J, Tonn JC, Weller M: BCL-2 promotes migration and invasiveness of human glioma cells. FEBS Lett 440: 419, 1998

    Google Scholar 

  5. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W: Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61: 2744, 2001

    Google Scholar 

  6. Wick W, Grimmel C, Wild-Bode C, Platten M, Arpin M, Weller M: Ezrin-dependent promotion of glioma cell clonogenicity, motility and invasion mediated by BCL-2 and TGF-β 2. J Neurosci 21: 3360, 2001

    Google Scholar 

  7. Moses HL, Branum EL, Proper JA, Robinson RA: Transforming growth factor production by chemically transformed cells. Cancer Res 41: 2842, 1981

    Google Scholar 

  8. Massagué J: The transforming growth factor-beta family. Annu Rev Cell Biol 6: 597, 1990

    Google Scholar 

  9. Blobe GC, Schiemann WP, Lodish HF: Role of transforming growth factor beta in human disease. N Engl J Med 342: 1350, 2000

    Google Scholar 

  10. McMahon GA, Dignam JD, Gentry LE: Structural characterization of the latent complex between transforming growth factor beta 1 and beta 1-latency-associated peptide. Biochem J 313: 343, 1996

    Google Scholar 

  11. Saharinen J, Taipale J, Monni O, Keski-Oja J: Identification and characterization of a new latent transforming growth factor-beta-binding protein, LTBP-4. J Biol Chem 273: 18459, 1998

    Google Scholar 

  12. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, Bouck N: Thrombospondin-1 is a major activator of TGF-β 1 in vivo. Cell 93: 1159, 1998

    Google Scholar 

  13. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D: The integrin β V β 5 binds and activates latent TGF-β 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96: 319, 1999

    Google Scholar 

  14. Sato Y, Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 109: 309, 1989

    Google Scholar 

  15. Abe M, Oda N, Sato Y: Cell-associated activation of latent transforming growth factor-beta by calpain. J Cell Physiol 174: 186, 1998

    Google Scholar 

  16. Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R: Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 270: 10618, 1995

    Google Scholar 

  17. Wrana JL, Attisano L: The Smad pathway. Cytokine Growth Factor Rev 11: 5, 2000

    Google Scholar 

  18. Massagué J, Wotton D: Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19: 1745, 2000

    Google Scholar 

  19. Teicher BA, Ikebe M, Ara G, Keyes SR, Herbst RS: Transforming growth factor-beta 1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo 11: 463, 1997

    Google Scholar 

  20. Ueki N, Nakazato M, Ohkawa T, Ikeda T, Amuro Y, Hada T, Higashino K: Excessive production of transforming growthfactor beta 1 can play an important role in the development of tumorigenesis by its action for angiogenesis: validity of neutralizing antibodies to block tumor growth. Biochim Biophys Acta 1137: 189, 1992

    Google Scholar 

  21. Merzak A, McCrea S, Koocheckpour S, Pilkington GJ: Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor beta 1. Br J Cancer 70: 199, 1994

    Google Scholar 

  22. Miyake K, Kimura S, Nakanishi M, Hisada A, Hasegawa M, Nagao S, Abe Y: Transforming growth factor-beta1 stimulates contraction of human glioblastoma cell-mediated collagen lattice through enhanced alpha2 integrin expression. J Neuropathol Exp Neurol 59: 18, 2000

    Google Scholar 

  23. Platten M, Wick W, Wild-Bode C, Aulwurm S, Dichgans J, Weller M: Transforming growth factors beta1 (TGF-beta1) and TGF-beta2 promote glioma cell migration via up-regulation of alphaV-beta3 integrin expression. Biochem Biophys Res Commun 268: 607, 2000

    Google Scholar 

  24. Olofsson A, Miyazono K, Kanzaki T, Colosetti P, Engstrom U, Heldin CH: Transforming growth factor-beta 1,-beta 2, and-beta 3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes. J Biol Chem 267: 19482, 1992

    Google Scholar 

  25. Vanky F, Nagy N, Hising C, Sjovall K, Larson B, Klein E: Human ex vivo carcinoma cells produce transforming growth factor beta and thereby can inhibit lymphocyte functions in vitro. Cancer Immunol Immunother 43: 317, 1997

    Google Scholar 

  26. Van Meir EG, Kikuchi T, Tada M, Li H, Diserens AC, Wojcik BE, Huang HJ, Friedmann T, de Tribolet N, Cavenee WK: Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 54: 649, 1994

    Google Scholar 

  27. Weller M, Rieger J, Grimmel C, Van Meir EG, de Tribolet N, Krajewski S, Reed JC, von Deimling A, Dichgans J: Predicting chemoresistance in human malignant glioma cells: the role of molecular genetic analyses. Int J Cancer 79: 640, 1998

    Google Scholar 

  28. Glaser T, Weller M: Caspase-dependent chemotherapyinduced death of glioma cells requires mitochondrial cytochrome c release. Biochem Biophys Res Commun 281: 322, 2001

    Google Scholar 

  29. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47: 3239, 1987

    Google Scholar 

  30. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67, 1980

    Google Scholar 

  31. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P: A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348: 699, 1990

    Google Scholar 

  32. Tonn JC, Kerkau S, Hanke A, Bouterfa H, Mueller JG, Wagner S, Vince GH, Roosen K: Effect of synthetic matrixmetalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80: 764, 1999

    Google Scholar 

  33. Gladson CL, Pijuan-Thompson V, Olman MA, Gillespie GY, Yacoub IZ: Up-regulation of urokinase and urokinase receptor genes in malignant astrocytoma. Am J Pathol 146: 1150, 1995

    Google Scholar 

  34. Mohanam S, Chintala SK, Go Y, Bhattacharya A, Venkaiah B, Boyd D, Gokaslan ZL, Sawaya R, Rao JS: In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor. Oncogene 14: 1351, 1997

    Google Scholar 

  35. Baker AH, George SJ, Zaltsman AB, Murphy G, Newby AC: Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 79: 1347, 1999

    Google Scholar 

  36. Paulus W, Baur I, Huettner C, Schmausser B, Roggendorf W, Schlingensiepen KH, Brysch W: Effects of transforming growth factor-beta 1 on collagen synthesis, integrin expression, adhesion and invasion of glioma cells. J Neuropathol Exp Neurol 54: 236, 1995

    Google Scholar 

  37. Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K: Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer 62: 386, 1995

    Google Scholar 

  38. Tsuzuki T, Izumoto S, Ohnishi T, Hiraga S, Arita N, Hayakawa T: Neural cell adhesion molecule L1 in gliomas: correlation with TGF-beta and p53. J Clin Pathol 51: 13, 1998

    Google Scholar 

  39. Uhm JH, Gladson CL, Rao JS: The role of integrins in the malignant phenotype of gliomas. Front Biosci 4: D188, 1999

    Google Scholar 

  40. Paulus W, Tonn JC: Interactions of glioma cells and extracellular matrix. J Neuro-Oncol 24: 87, 1995

    Google Scholar 

  41. Czyz M, Cierniewski CS: Selective Sp1 and Sp3 binding is crucial for activity of the integrin alphaV promoter in cultured endothelial cells. Eur J Biochem 265: 638, 1999

    Google Scholar 

  42. Li JM, Datto MB, Shen X, Hu PP, Yu Y, Wang: Sp1, but not Sp3, functions to mediate promoter activation by TGF-beta through canonical Sp1 binding sites. Nucleic Acids Res 26: 2449, 1998

    Google Scholar 

  43. Massagué J: TGF-beta signal transduction. Annu Rev Biochem 67: 753, 1998

    Google Scholar 

  44. Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ: The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82: 52, 2000

    Google Scholar 

  45. Liu C, Yao J, Mercola D, Adamson E: The transcription factor EGR-1 directly transactivates the fibronectin gene and enhances attachment of human glioblastoma cell line U251. J Biol Chem 275: 20315, 2000

    Google Scholar 

  46. Grady WM, Rajput A, Myeroff L, Liu DF, Kwon K, Willis J, Markowitz S: Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 58: 3101, 1998

    Google Scholar 

  47. Maehara Y, Kakeji Y, Kabashima A, Emi Y, Watanabe A, Akazawa K, Baba H, Kohnoe S, Sugimachi K: Role of transforming growth factor-beta 1 in invasion and metastasis in gastric carcinoma. J Clin Oncol 17: 607, 1999

    Google Scholar 

  48. Festuccia C, Angelucci A, Gravina GL, Villanova I, Teti A, Albini A, Bologna M, Abini A: Osteoblast-derived TGFbeta1 modulates matrix degrading protease expression and activity in prostate cancer cells. Int J Cancer 85: 407, 2000

    Google Scholar 

  49. Sehgal I, Thompson TC: Novel regulation of type IV collagenase (matrix metalloproteinase-9 and-2) activities by transforming growth factor-beta1 in human prostate cancer cell lines. Mol Biol Cell 10: 407, 1999

    Google Scholar 

  50. Iozzo RV: The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 274: 18843, 1999

    Google Scholar 

  51. Martin M, Lefaix J, Delanian S: TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47: 277, 2000

    Google Scholar 

  52. Nakano A, Tani E, Miyazaki K, Furuyama J, Matsumoto T: Expressions of matrilysin and stromelysin in human glioma cells. Biochem Biophys Res Commun 192: 999, 1993

    Google Scholar 

  53. Esteve PO, Tremblay P, Houde M, St Pierre Y, Mandeville R: In vitro expression of MMP-2 and MMP-9 in glioma cells following exposure to inflammatory mediators. Biochim Biophys Acta 1403: 85, 1998

    Google Scholar 

  54. Platten M, Wick W, Weller M: Malignant glioma biology: Role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52: 401, 2001

    Google Scholar 

  55. Ständer M, Naumann U, Dumitrescu L, Heneka M, Löschmann P, Gulbins E, Dichgans J, Weller M: Decorin gene transfer-mediated suppression of TGF-beta synthesis abrogates experimental malignant glioma growth in vivo. Gene Ther 5: 1187, 1998

    Google Scholar 

  56. Isaka Y, Brees DK, Ikegaya K, Kaneda Y, Imai E, Noble NA, Border WA: Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med 2: 418, 1996

    Google Scholar 

  57. Ito S, Sakamoto T, Tahara Y, Goto Y, Akazawa K, Ishibashi T, Inomata H: The effect of tranilast on experimental proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 237: 691, 1999

    Google Scholar 

  58. Ikeda H, Inao M, Fujiwara K: Inhibitory effect of tranilast on activation and transforming growth factor beta 1 expression in cultured rat stellate cells. Biochem Biophys Res Commun 227: 322, 1996

    Google Scholar 

  59. Platten M, Wild-Bode C, Wick W, Dichgans J, Weller M: N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) inhibits TGF-release and reduces migration and invasiveness of human malignant glioma cells. Int J Cancer 93: 53, 2001

    Google Scholar 

  60. Wild-Bode C, Weller M, Wick W: Molecular determinants of glioma cell migration and invasion. J Neurosurg 94: 978, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wick, W., Platten, M. & Weller, M. Glioma Cell Invasion: Regulation of Metalloproteinase Activity by TGF-β. J Neurooncol 53, 177–185 (2001). https://doi.org/10.1023/A:1012209518843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012209518843

Navigation