Skip to main content
Log in

Determination of Free Extracellular Levels of Methotrexate by Microdialysis in Muscle and Solid Tumor of the Rabbit

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine of the pharmacokinetic profile of methotrexate (MTX) in blood and extracellular fluid (ECF) of VX2 tumor and muscle in rabbits.

Methods. Microdialysis probes were inserted into VX2 tumor and in muscle tissue. Following intravenous administration of MTX (30 mg/ kg), serial collection of arterial blood samples and dialysates of muscle and tumor ECF for 4 h was carried out. Quantitation of MTX and determination of free plasma concentrations was performed by fluorescence polarization immunoassay and ultrafiltration, respectively. Correlations were established between the unbound plasma and ECF MTX concentrations.

Results. Total and free plasma concentrations exhibited a parallel three exponential decay in both healthy and tumorigenic animals. Total clearance (8.9 vs 6.5 ml−1.min−1.kg−1) and volume of distribution (4.0 vs 2.9 1.kg−1), however, tended to decrease in the tumor-bearing group. The ECF/plasma AUC ratio equaled 14.2 ± 8.8% in muscle and 23.9 ± 15.9% in tumor. The concentration-time profile of muscle ECF MTX was parallel and highly correlated (r = 0.97) to that determined in plasma. In contrast, free MTX plasma levels were not correlated with tumor ECF concentrations (r = 0.564).

Conclusions. In addition to the well-known pharmacological variability in the concentration-effect relationship, the important inter-individual variability in tumor exposure to MTX may partly explain that studies in patients with solid tumors have often failed to demonstrate firm correlations between MTX blood pharmacokinetics and the chemotherapeutic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Saeter, T. A. Alvegard, I. Elomaa, A. E. Stenwing, T. Holmstrom, and O. P. Solheim. J. Clin. Oncol. 9:1766–1775 (1991).

    Google Scholar 

  2. P. O. Ekstrom, A. Andersen, D. J. Warren, K. E. Giercksyt, and L. Slordal. Cancer Chemother. Pharmacol. 34:297–301 (1994).

    Google Scholar 

  3. P. O. Ekstrom, A. Andersen, D. J. Warren, K. E. Giercksyt, and L. Slordal. Cancer Chemother. Pharmacol. 36:283–289 (1995).

    Google Scholar 

  4. P. O. Ekstrom, A. Andersen, D. J. Warren, K. E. Giercksyt, and L. Slordal. Cancer Chemother. Pharmacol. 37:394–400 (1996).

    Google Scholar 

  5. E. C. M. de Lange, J. D. de Vries, C. Zurcher, M. Danhof, A. G. de Boer, and Douwe D. Breimer. Pharm. Res. 12:1924–1931 (1995).

    Google Scholar 

  6. W. Cosolo, O. H. Drummer, and H. Christophidis. J. Chromatogr. 494:201–208 (1989).

    Google Scholar 

  7. J. P. Constans, C. Ciolocas, F. Terrazas, and C. Vedrenne. Neuro-Chirurgie. 21:537–548 (1975).

    Google Scholar 

  8. J. G. Kidd and P. Rous. J. Med. 71:42–47 (1940).

    Google Scholar 

  9. M. L. Chen and W. L. Chiou. J. Pharmacokin. Biopharm. 11:499–513 (1983).

    Google Scholar 

  10. K. Sasaki, R. Hosoya, Y-M. Wang, and G. L. Raulton. Biochem. Pharmacol. 32:503–507 (1983).

    Google Scholar 

  11. H. Breithaupt and E. Küenzlen. Cancer Treat. Rep. 66:1733–1741 (1982).

    Google Scholar 

  12. W. E. Evans, W. R. Crom, and J. C. Yalowich. Methotrexate. In W. E. Evans J. J. Schentag and W. J. Jusko (eds), Applied pharmacokinetics: Principles of therapeutic drug monitoring, 4th ed., Applied therapeutics, Washington, 1986, pp 1009–1056.

  13. H. Iven, H. Brasch, and J. Engster. Cancer Chemother. Pharmacol. 15:115–120 (1985).

    Google Scholar 

  14. A. Perrin, G. Milano, A. Thyss, P. Cambon, and M. Schneider. Br. J. Cancer 62:736–741 (1990).

    Google Scholar 

  15. M. L. Chen and W. L. Chiou. Drug Metab. Disp. 10:706–707 (1982).

    Google Scholar 

  16. D. Devineni, A. Klein-Szanto, and J. M. Gallo. Cancer Chemother. Pharmacol. 38:499–507 (1996).

    Google Scholar 

  17. R. Raveendran, W. M. Heybroek, M. Caulfield, S. M. L. Abrams, P. F. M. Wrigley, M. Slevin, and P. Turner. Int. J. Clin. Pharm. Res., 12:117–122 (1992).

    Google Scholar 

  18. Y. Degushi, T. Terasaki, S. Kawasaki, and A. Tsuji. J. Pharmacobio-Dyn. 14:483–492 (1991).

    Google Scholar 

  19. R. K. Palsmeier and G. E. Lunte. Life Sci. 55:815–825 (1994).

    Google Scholar 

  20. A. Nolting, T. Dalla Costa, R. Vistelle, K. H. Rand, and H. Derendorf. J. Pharm. Sci. 85:369–372 (1996).

    Google Scholar 

  21. J. H. Schornagel and J. G. McVie. Cancer Treat. Rev. 10:53–75 (1983).

    Google Scholar 

  22. S. R. Cherry, P. Carnochan, J. W. Babich, F. Serafini, N. P. Rowell, and I. A. Watson. J. Nucl. Med. 31:1307–1315 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dukic, S., Kaltenbach, M.L., Gourdier, B. et al. Determination of Free Extracellular Levels of Methotrexate by Microdialysis in Muscle and Solid Tumor of the Rabbit. Pharm Res 15, 133–138 (1998). https://doi.org/10.1023/A:1011973409022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011973409022

Navigation