Skip to main content
Log in

Prediction of proton chemical shifts in RNA – Their use in structure refinement and validation

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct., 76, 81–92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341–346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1H chemical shifts revealing their physical origin. For example, a down-field shift of either H2′ or H3′ or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5′-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allain, F.H.T. and Varani, G. (1995) J. Mol. Biol., 250, 333-353.

    Google Scholar 

  • Allain, F.H.T. and Varani, G. (1997) J. Mol. Biol., 267, 338-351.

    Google Scholar 

  • Altona, C., Faber, D.H. and Westra Hoekzema, A.J.A. (2000) Magn. Reson. Chem., 38, 95-107.

    Google Scholar 

  • Asakura, T., Niizawa, Y. and Williamson, M.P. (1992) J. Magn. Reson., 98, 646-653.

    Google Scholar 

  • Asakura, T., Taoka, K., Demura, M. and Williamson, M.P. (1995) J. Biomol. NMR, 6, 227-236.

    Google Scholar 

  • Bevington, P.R. (1969) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, NY.

    Google Scholar 

  • Borer, P.N., Lin, Y., Wang, S., Roggenbuck, M.W., Gott, J.M., Uhlenbeck, O.C. and Pelczer, I. (1995) Biochemistry, 34, 6488-6503.

    Google Scholar 

  • Brodsky, A.S. and Williamson, J.R. (1997) J. Mol. Biol., 267, 624-639.

    Google Scholar 

  • Butcher, S.E., Dieckmann, T. and Feigon, J. (1997) J. Mol. Biol., 268, 348-358.

    Google Scholar 

  • Case, D.A. (1995) J. Biomol. NMR, 6, 341-346.

    Google Scholar 

  • Case, D.A., Dyson, H.J. and Wright, P.E. (1994) Methods Enzymol., 239, 392-416.

    Google Scholar 

  • Celda, B., Biamonti, C., Arnau, M.J., Tejero, R. and Montelione, G.T. (1995) J. Biomol. NMR, 5, 161-172.

    Google Scholar 

  • Cheong, C. and Moore, P.B. (1992) Biochemistry, 31, 8406-8414.

    Google Scholar 

  • Colmenarejo, G. and Tinoco, Jr., I. (1999) J. Mol. Biol., 290, 119-135.

    Google Scholar 

  • Cromsigt, J.A.M.T.C., van Buuren, B.N.M., Zdunek, J., Schleucher, J., Hilbers, C.W. and Wijmenga, S.S. (1998). In Magnetic Resonance and Related Phenomena, Ziessow, D., Lubitz, W. and Lendzian, F. (Eds.), Technische Universität Berlin, Berlin, pp. 132-133.

    Google Scholar 

  • Dejaegere, A., Bryce R.A. and Case, D.A. (1999) In Modeling NMR Chemical Shifts. Gaining Insight into Structure and Environment, Facelli, J.C. and de Dios, A.C. (Eds.), Americal Chemical Society, Washington, DC, pp. 194-206.

    Google Scholar 

  • Dieckmann, T. and Feigon, J. (1997) J. Biomol. NMR, 9, 259-272.

    Google Scholar 

  • Fan, P., Suri, A.K., Fiala, R., Live, D. and Patel, D.J. (1996) J. Mol. Biol., 258, 480-500.

    Google Scholar 

  • Giessner-Prettre, C. and Pullman, B. (1987) Q. Rev. Biophys., 20, 113-172.

    Google Scholar 

  • Green, M.R. and Valcarcel, J. (1996) TIBS, 21, 296-301.

    Google Scholar 

  • Haigh, C.W. and Mallion, R.B. (1980) Prog. NMR. Spect., 13, 303-344.

    Google Scholar 

  • Hilbers, C.W., Blommers, M.J.J., van de Ven, F.J.M., van Boom, J.H. and van der Marel, G.A. (1991), Nucleosides Nucleotides, 10, 61-80.

    Google Scholar 

  • Hilbers, C.W., Heus, H.A., van Dongen, M.J.P. and Wijmenga, S.S. (1994) In Nucleic Acids and Molecular Biology, Eckstein, F. and Lilley, D.M.J. (Eds.), Springer-Verlag, Berlin, pp. 56-104.

    Google Scholar 

  • Hoogstraten, C.G., Legault, P. and Pardi, A. (1998) J. Mol. Biol., 284, 337-350.

    Google Scholar 

  • Johnson, C.E. and Bovey, F.A. (1958) J. Chem. Phys., 29, 1012-1014.

    Google Scholar 

  • Jucker, F.M. and Pardi, A. (1995) Biochemistry, 34, 14416-14427.

    Google Scholar 

  • Kalurachchi, K. and Nikonowicz, E.P. (1998) J. Mol. Biol., 280, 639-654.

    Google Scholar 

  • Kang, H.S. and Tinoco, Jr., I. (1997) Nucleic Acids Res., 25, 1943-1949.

    Google Scholar 

  • Kang, H.S., Hines, J.V. and Tinoco, Jr., I. (1996) J. Mol. Biol., 259, 135-147.

    Google Scholar 

  • Kolk, M.H., Heus, H.A. and Hilbers, C.W. (1997) EMBO J., 16, 3685-3692.

    Google Scholar 

  • Kolk, M.H., van der Graaf, M., Fransen, C.T.M., Wijmenga, S.S., Pleij, C.W.A., Heus, H.A. and Hilbers, C.W. (1998a) EMBO J., 17, 7498-7504.

    Google Scholar 

  • Kolk, M.H., van der Graaf, M., Wijmenga, S.S., Pleij, C.W.A., Heus, H.A. and Hilbers, C.W. (1998b) Science, 280, 434-438.

    Google Scholar 

  • Kolk, M.H., Wijmenga, S.S., Heus, H.A. and Hilbers, C.W. (1998c) J. Biomol. NMR, 12, 423-433.

    Google Scholar 

  • Kuszewski, J., Gronenborn, A.M. and Clore, M. (1995a) J. Magn. Reson. B., 106, 92-96.

    Google Scholar 

  • Kuszewski, J., Gronenborn, A.M. and Clore, M. (1995b) J. Magn. Reson. B., 107, 293-297.

    Google Scholar 

  • Legault, P., Hoogstraten, C.G., Metlitzky, E. and Pardi, A. (1998) J. Mol. Biol., 284, 325-335.

    Google Scholar 

  • McDowell, J.A., He, L.Y., Chen, X.Y. and Turner, D.H. (1997) Biochemistry, 36, 8030-8038.

    Google Scholar 

  • Nooren, I.M.A., Wang, K.Y., Borer, P.N. and Pelczer, I. (1998) J. Biomol. NMR, 11, 319-328.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436-9444.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215-230.

    Google Scholar 

  • Ösapay, K., Theriault, Y., Wright, P.E. and Case, D.A. (1994) J. Mol. Biol., 244, 183-197.

    Google Scholar 

  • Peterson, R.D. and Feigon, J. (1996) J. Mol. Biol., 264, 863-877.

    Google Scholar 

  • Popenda, M., Biala, E., Milecki, J. and Adamiak, R.W. (1997) Nucleic Acids Res., 25, 4589-4598.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1989) Numerical Recipes in Pascal: The Art of Scientific Computing, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ribas-Prado, R. and Giessner-Prettre, C. (1981) J. Mol. Struct., 76, 81-92.

    Google Scholar 

  • Santalucia, J. and Turner, D.H. (1993) Biochemistry, 32, 12612-12623.

    Google Scholar 

  • Shen, L.X. and Tinoco, Jr., I. (1995) J. Mol. Biol., 247, 963-978.

    Google Scholar 

  • Sich, C., Ohlenschläger, O., Ramachandran, R., Görlach, M. and Brown, L.R. (1997) Biochemistry, 36, 13989-14002.

    Google Scholar 

  • Smit, J.S. and Nikonowicz, E.P. (1998) Biochemistry, 37, 13486-13498.

    Google Scholar 

  • Szewczak, A.A. and Moore, P.B. (1995) J. Mol. Biol., 247, 81-98.

    Google Scholar 

  • van Buuren, B.N.M., Overmars, F.J.J., Ippel, J.H., Altona, C. and Wijmenga, S.S. (2000) J. Mol. Biol., 304, 371-383.

    Google Scholar 

  • van de Ven, F.J.M. and Hilbers, C.W. (1988a) Eur. J. Biochem., 178, 1-38.

    Google Scholar 

  • van de Ven, F.J.M. and Hilbers, C.W. (1988b) Nucleic Acids Res., 16, 5713-5726.

    Google Scholar 

  • Varani, G., Cheong, C. and Tinoco, Jr., I. (1991) Biochemistry, 30, 3280-3289.

    Google Scholar 

  • Westhof, E. and Fritsch, V. (2000) Struct. Folding Design, 8, R55-R65.

    Google Scholar 

  • White, S.W., Nilges, M., Huang, A., Brunger, A.T. and Moore, P.B. (1992) Biochemistry, 31, 1610-1621.

    Google Scholar 

  • Wijmenga, S.S. and van Buuren, B.N.M. (1998) Prog. NMR. Spec., 32, 287-387.

    Google Scholar 

  • Wijmenga, S.S., Mooren, M.M. and Hilbers, C.W. (1993) In NMR of Macromolecules, A Practical Approach, Roberts, G.C.K. (Ed.), Oxford University Press, New York, NY, pp. 217-288.

    Google Scholar 

  • Wijmenga, S.S., Kruithof, M. and Hilbers, C.W. (1997) J. Biomol. NMR, 10, 337-350.

    Google Scholar 

  • Williamson, M.P. and Asakura, T. (1993) J. Magn. Reson. B., 101, 63-71.

    Google Scholar 

  • Williamson, J.R. and Boxer, S.G. (1989) Biochemistry, 28, 2819-2831.

    Google Scholar 

  • Williamson, M.P., Kikuchi, J. and Asakura, T. (1995) J. Mol. Biol., 247, 541-546.

    Google Scholar 

  • Wishart, D.S. and Sykes, B.D. (1994) Methods Enzymol., 239, 363-392.

    Google Scholar 

  • Wu, M. and Turner, D.H. (1996) Biochemistry, 35, 9677-9689.

    Google Scholar 

  • Wu, M., Santalucia, J. and Turner, D.H. (1997) Biochemistry, 36, 4449-4460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cromsigt, J.A., Hilbers, C.W. & Wijmenga, S.S. Prediction of proton chemical shifts in RNA – Their use in structure refinement and validation. J Biomol NMR 21, 11–29 (2001). https://doi.org/10.1023/A:1011914132531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011914132531

Navigation