Skip to main content
Log in

Plant and insect diversity along a pollution gradient: understanding species richness across trophic levels

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

We analysed species richness of plants and true bugs (Insecta, Heteroptera) along a pollution gradient in Scots pine stands in Central Germany. As a consequence of particulate deposition, pH-values of soils increased in the vicinity of the emission source. Therefore, emission increased productivity. Species richness of plants increased with decreasing distance from emission source, and thus with increasing productivity. Similarly, species richness of herbivorous Heteroptera increased with decreasing distance from emission source, whereas, surprisingly, abundance decreased. The proportion of specialised herbivorous bug species is largest in the vicinity of the emission source. Thus, the diversity pattern of herbivores may be explained by the ‘specialisation hypothesis’ and not the ‘consumer rarity hypothesis’. Species richness and abundance of carnivorous Heteroptera showed no significant trend along the gradient. Overall our data favour the ‘bottom-up’ control of species diversity in the analysed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams PA (1995) Monotonic or unimodal diversity-productivity gradients: what does competition theory predicts? Ecology 76: 2019-2027

    Google Scholar 

  • Amarell U (1997)Anthropogene Vegetationsveränderungen in den Kiefernforsten der Dübener Heide. In: Feldmann R, Henle K, Auge H, Flachowsky J, Klotz S and Krönert R (eds) Regeneration und nachhaltige Landnutzung. Konzepte für belastete Regionen, pp 110-117. Springer-Verlag, Berlin

    Google Scholar 

  • Amarell U (1998)Kiefernforste der Dübener Heide-Ursachen und Verlauf der Entstehung und Veränderung von Forstgesellschaften. Dissertation, Institute of Botany, Geobotany and Botanical Garden, Martin-Luther-Universität, Halle/Saale

    Google Scholar 

  • Barker JR and Tingey DT (1992) The effects of air pollution on biodiversity: a synopsis. In: Barker JR and Tingey DT (eds) Air Pollution Effects on Biodiversity, pp 3-9. Van Nostrand Reinhold, New York

    Google Scholar 

  • Brändle M (1997)Tritrophische Untersuchungen in einem belasteten Ökosystem. Die Wanzen (Heteroptera) als Modellsystem. Dissertation, Department of Ecology, Friedrich-Schiller-Universität, Jena

    Google Scholar 

  • Brändle M and Neumann S (1997)Der Einfluß von Immissionen auf die Diversität von Insekten verschiedener Trophiestufen. In: Feldmann R, Henle K, Auge H, Flachowsky J, Klotz S and Krönert R (eds) Regeneration und nachhaltige Landnutzung. Konzepte für belastete Regionen, pp 118-123. Springer-Verlag, Berlin

    Google Scholar 

  • Brändle M and Rieger C (1999) Die Wanzenfauna (Insecta, Heteroptera) von Kiefernstandorten (Pinus sylvestris L.) inMitteleuropa. Faunistische Abhandlungen Museum für Tierkunde, Dresden 21: 239-258

    Google Scholar 

  • Brändle M, Stadler J and Brandl R (2000) Body size and host range in European Heteroptera. Ecography 23: 139-148

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Springer-Verlag, Berlin

    Google Scholar 

  • Crawley MJ (1993) GLIM for Ecologists. Blackwell Science Publications, Oxford

    Google Scholar 

  • DeAngelis DL (1994) Relationship between energetic of species and large scale species richness. In: Jones CG and Lawton JH (eds) Linking Species and Ecosystems, pp 263-272. Chapman & Hall, London

    Google Scholar 

  • Dolling WR (1991) The Hemiptera. Oxford University Press, New York

    Google Scholar 

  • Ellenberg H (1979)Zeigerwerte der Gefäß pflanzen Mitteleuropas. Scripta Geobotanica 9: 1-122

    Google Scholar 

  • Frank D and Klotz S (1990) Biologisch-ökologische Daten zur Flora der DDR. Wiss Beitr Martin-Luther-Universität, Halle-Wittenberg 32: 1-167

    Google Scholar 

  • Frenzel M and Brandl R (1998) Body size and host range in herbivorous beetles on different geographical scales. Verhandlungen der Gesellschaft für Ökologie 28: 201-205

    Google Scholar 

  • Gluch W (1997)Wirkungen der Luftbelastung auf dieWaldkiefer als dominante Baumart. Sichtbare Immissionschäden in den Baumkronen. In: Feldmann R, Henle K, Auge H, Flachowsky J, Klotz S and Krönert R (eds) Regeneration und nachhaltige Landnutzung. Konzepte für belastete Regionen, pp 102-105. Springer-Verlag, Berlin

    Google Scholar 

  • Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM and Evans-Freke I (1998) Metapopulation dynamics, abundance and distribution in a microecosystem. Science 281: 2045-2047

    PubMed  Google Scholar 

  • Gotelli NJ and Entsminger GL (1997) EcoSim. Null models software for ecology. Version 1.11. Acquired Intelligence Inc. & Kesey-Bear

  • Gotelli NJ and Graves GR (1996) Null Models in Ecology. Smithsonian Institution Press, Washington, DC/ London

    Google Scholar 

  • Grime JP (1979) Plant Strategies and Vegetation Processes. Wiley, Chichester

    Google Scholar 

  • Halley JM (1996) Ecology, evolution and 1/f-noise. Trends in Ecology and Evolution 11: 33-37

    Google Scholar 

  • Harvey P and Pagel MD (1991) The Comparative Method in Evolutionary Ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Dimitrakopoulus PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O'Donnovan G, Otway SJ, Periea JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S and Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286: 1123-1127

    PubMed  Google Scholar 

  • Hooper DU and Vitousek PM (2000) The effects of plant composition and diversity on ecosystem processes. Science 277: 1302-1305

    Google Scholar 

  • Huettl RF and Zoettl HW (1993) Liming as a mitigation tool in Germany's declining forests-reviewing results from former and recent trials. Forest Ecology and Management 61: 325-338

    Google Scholar 

  • Hunter MD and Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces. Ecology 73: 724-732

    Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577-586

    Google Scholar 

  • Huston MA (1994) Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449-460

    Article  Google Scholar 

  • Huston MA and Gilbert L (1996) Consumer diversity and secondary production. In: Orians GH, Dirzo R and Cushman JH (eds) Biodiversity and Ecosystem Processes in Tropical Forests, pp 34-47. Springer-Verlag, Berlin/New York

    Google Scholar 

  • Kreutzer K (1995) Effects of forest liming on soil processes. Plant and Soil 169: 447-470

    Google Scholar 

  • Magguran AE (1988) Ecological Diversity and its Measurement. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Manly BJF (1996) RT: a program for randomization testing. Centre for Applications of Statistics and Mathematics, University of Otago, Dunedin

  • Marschner B and Wilczynski AW (1991) The effects of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany. Plant and Soil 137: 229-236

    Google Scholar 

  • Moen J and Collins SL (1996) Trophic interactions and plant species richness along a productivity gradient. Oikos 76: 603-607

    Google Scholar 

  • Neuffer B, Auge H, Mesch H, Amarell U and Brandl R (1999) Spread of violets in polluted pine forests: morphological and molecular evidence for the ecological importance of interspecific hybridization. Molecular Ecology 8: 365-377

    Google Scholar 

  • Neumeister H, Franke C, Nagel C, Peklo G, Zierath R and Peklo P (1991) Immisionsbedingte Stoffeintraege aus der Luft als geomorphologischer Faktor. Geooekodynamik 7: 1-40

    Google Scholar 

  • Oksanen J (1996) Is the humped relationship between species richness and biomass an artefact due to plot size? Journal of Ecology 84: 293-295

    Google Scholar 

  • Oksanen L, Fretwell SD and Niemelä O (1981) Exploitation ecosystems in gradients of primary productivity. American Naturalist 118: 240-261

    Google Scholar 

  • Persson T (1989) Role of soil animals in C and N mineralisation. Plant and Soil 115: 241-245

    Google Scholar 

  • Ricklefs RE and Schluter D (1993) Regional and historical influences. In: Ricklefs RE and Schluter D (eds) Species Diversity in Ecological Communities, pp 350-363. The University of Chicago Press, Chicago

    Google Scholar 

  • Rosenzweig ML and Abramsky Z (1993) How are diversity and productivity related? In: Ricklefs RE and Schluter D (eds) Species Diversity in Ecological Communities, pp 52-65. The University of Chicago Press, Chicago

    Google Scholar 

  • Schaetzl RJ, Burns SF, Johnson DL and Small TW (1989) Tree uprooting: review of impacts on forest ecology. Vegetatio 79: 165-176

    Google Scholar 

  • Schmidt W (1992)Der Einfluß von Kalkungsmaß nahmen auf die Waldbodenvegetation. Z Ökologie u Naturschutz 1: 79-88

    Google Scholar 

  • Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79: 2057-2070

    Google Scholar 

  • Siemann E, Haarstad J and Tilman D (1999) Dynamics of plant and arthropod diversity during old field succession. Ecography 22: 406-414

    Google Scholar 

  • Smallidge PJ, Brach AR and Mackun IR (1993) Effects of watershed liming on terrestrial ecosystem processes. Environmental Reviews 1: 157-171

    Google Scholar 

  • Sokal RR and Rohlf FJ (1995) Biometry (3rd edn). Freeman and Company, New York

    Google Scholar 

  • Srivastava DS and Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. American Naturalist 152: 510-529

    Google Scholar 

  • Strong DR, Lawton JH and Southwood TRE (1984) Insects on Plants-Community Patterns and Mechanism. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tscharntke T (1992) Fragmentation of Phragmites habitats, minimum viable population size, habitat suitability, and local extinction of moths, midges, flies, aphids, and birds. Conservation Biology 6: 530-536

    Google Scholar 

  • Wagner E (1952) Blindwanzen oder Miriden. In: Dahl M and Bischoff H (eds) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. 41. Teil, pp 1-218. Fischer, Jena

    Google Scholar 

  • Wagner E (1966)Wanzen oder Heteropteren. I. Pentatomorpha. In: Dahl M and Bischoff H (eds) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. 54. Teil, pp 1-235. Fischer, Jena

    Google Scholar 

  • Wagner E (1967)Wanzen oder Heteropteren. II Cimicomorpha. In: Dahl M and Bischoff H (eds) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. 55. Teil, pp 1-179. Fischer, Jena

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brändle, M., Amarell, U., Auge, H. et al. Plant and insect diversity along a pollution gradient: understanding species richness across trophic levels. Biodiversity and Conservation 10, 1497–1511 (2001). https://doi.org/10.1023/A:1011815325503

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011815325503

Navigation