Skip to main content
Log in

Non-Parallel Acoustic Receptivity of a Blasius Boundary Layer Using an Adjoint Approach

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Localized and non-localized acoustic receptivity for a Blasius boundary layer is investigated using the adjoint Parabolized Stability Equations. The scattering of an acoustic wave onto a hump, a rectangular roughness or a wall steady blowing and suction is described. Comparisons with local approaches, triple deck theory, direct numerical simulations and experiments are successfully shown. Non-parallel effects are discussed. For comparable parameters, the non-localized receptivity problem produces amplitudes one order of magnitude larger than for the case of localized receptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Airiau, C. and Casalis, G., Linear stability of the boundary layer using a parabolic system of equations. La Recher. Aérosp. 10 (1993)57–68.

    MathSciNet  Google Scholar 

  2. Airiau, C. and Casalis, G., Non linear PSE compared with DNS and experiment. In: Kobayashi, R. (ed.), IUTAM Symposium Laminar-Turbulent Transition, Sendai, Japan. Springer-Verlag, Berlin (1994)pp.85–92.

    Google Scholar 

  3. Andersson, P., Berggren,M. and Henningson, D.S., Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11(1) (1999)134–150.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bertolotti, F.P., Herbert, T. and Spalart, P.R., Linear and non linear stability of the Blasius boundary layer. J. Fluid Mech. 242 (1992)441–474.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bodonyi, R.J., Welch, W.J.C., Duck, P.W. and Tadjfar, M., A numerical study of the interaction between unsteady free-stream disturbances and localized variations in surface geometry. J. Fluid Mech. 209 (1989)285–308.

    Article  MATH  ADS  Google Scholar 

  6. Casalis, G., Gouttenoire, C. and Troff, B., DNS investigation of leading edge and localized receptivity. Presented at First AFSOR International Conference on DNS and LES, Ruston, LA, U.S.A., August 4–8 (1997)

  7. Casalis, G., Gouttenoire, C. and Troff, B., Localized receptivity of the boundary layer. C.R. Acad. Sci. Paris, Série II b, Fluid Mech. 325 (1997)571–576.

    MATH  ADS  Google Scholar 

  8. Choudhari, M. and Street, C.L., A finite Reynolds-number approach for the prediction of boundary-layer receptivity in localized regions. Phys. Fluids A4(11) (1992)2495–2514.

    ADS  Google Scholar 

  9. Corke, T.C., Bar-Sever, A. and Morkovin, M.V., Experiments on transition enhancement by distributed roughness. Phys. Fluids 29(10) (1986)3199–3213.

    Article  ADS  Google Scholar 

  10. Crouch, J.D., Non-localized receptivity of boundary layers. J. FluidMech. 244 (1992)567–581.

    MATH  MathSciNet  ADS  Google Scholar 

  11. Crouch, J.D., Localized receptivity of boundary layers. Phys. Fluids A4(7) (1992)1408–1414.

    ADS  Google Scholar 

  12. Crouch, J.D. and Spalart, P.R., A study of non-parallel and non-linear effects on the localized receptivity of boundary layers. J. Fluid Mech. 290 (1995)29–37.

    Article  MATH  ADS  Google Scholar 

  13. Goldstein, M.E., The evolution of Tollmien-Schlichting waves near the leading edge. J. Fluid Mech. 127 (1983)59–81.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Goldstein, M.E., Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154 (1985)509–529.

    Article  MATH  ADS  Google Scholar 

  15. Goldstein, M.E. and Hultgren, L.S., A note on the generation of the T.S. waves by sudden surface-curvature change. J. Fluid Mech. 181 (1987)519–525.

    Article  MATH  ADS  Google Scholar 

  16. Goldstein, M.E. and Hultgren, L.S., Boundary-layer receptivity to long-wave free-stream disturbances. Ann. Rev. Fluid Mech. 21 (1989)137–166.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Herbert, T.H., Parabolized stability equations. Ann. Rev. Fluid Mech. 29 (1997)245–283.

    Article  MathSciNet  ADS  Google Scholar 

  18. Hill, D.C., Boundary layer receptivity and control. Annual Research Briefs, Center for Turbulence Research, Stanford University, Stanford, CA (1993).

  19. Hill, D.C., Adjoint system and their role in the receptivity problem for boundary layer. J. Fluid Mech. 292 (1995)183–204.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Hill, D.C., Receptivity in non-parallel boundary layers. Presented at ASME Fluids Engineering Division Summer Meeting, June 22–26, FEDSM97–3108 (1997).

  21. Kerschen, E.K., Boundary layer receptivity theory. Appl. Mech. Rev. 43(5), Part 2 (1990)pp.152–157.

    Article  Google Scholar 

  22. Kobayashi, R., Fukunishi, Y., Nishikawa, T. and Kato, T., The receptivity of flat plate boundary layers with two-dimensional roughness elements to freestream sound and its control. In: Kobayashi, R. (ed.), Proceedings IUTAM Symposium Laminar-Turbulent Transition, Sendai, Japan. Springer-Verlag, Berlin (1994)pp.507–514.

    Google Scholar 

  23. Lessen, M. and Gangwani, S.T., Effect of small amplitude wall waviness upon the stability of the laminar boundary layer. Phys. Fluids 19(4) (1976)510–513.

    Article  MATH  ADS  Google Scholar 

  24. Luchini, P. and Bottaro, A., Görtler vortices: A backward-in-time approach to the receptivity problem. J. Fluid Mech. 363 (1998)1–23.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Luchini, P., Reynolds-number-independent instability of the boundary layer over a flat surface. Optimal perturbations. J. Fluid Mech. 404 (2000)289–309.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Nishioka, M. and Morkovin, M.V., Boundary-layer receptivity to unsteady pressure gradients: Experiments and overview. J. Fluid Mech. 171 (1986)219–261.

    Article  ADS  Google Scholar 

  27. Ruban, A.I., On the generation of Tollmien-Schlichting waves by sound. Fluid Dynam. 19 (1985)709.

    Google Scholar 

  28. Saric, W.S., Physical description of boundary-layer transition: Experimental evidence. AGARD Report R793 (1993)pp.183–204.

  29. Tumin, A.M. and Fedorov, A.V., Instability wave excitation by a localized vibrator in the boundary layer. J. Appl. Mech. Tech. Phys. 25 (1984)867–873.

    Article  ADS  Google Scholar 

  30. Tumin, A., Receptivity of pipe Poiseuille flow. J. Fluid Mech. 315 (1996)119–137.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Airiau, C. Non-Parallel Acoustic Receptivity of a Blasius Boundary Layer Using an Adjoint Approach. Flow, Turbulence and Combustion 65, 347–367 (2000). https://doi.org/10.1023/A:1011472831831

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011472831831

Navigation