Skip to main content
Log in

Protective Coatings on Heat-Resistant Nickel Alloys (Review)

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The literature on materials for protective coatings on heat-resistant nickel alloys and methods for their production is reviewed in order to generalize the results and determine the principal directions for solution of the problem under consideration. It is shown that a promising approach is the development of layered composite ceramic coatings which, thanks to a graded variation of properties, are able to provide an optimal combination of adherence, mechanical strength, and corrosion and heat resistance. The methods of physical vapor deposition, plasma spraying, and electron-beam deposition remain the principal industrial processes for coating deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Kostyuk and V. V. Frolov (eds.), Steam and Gas Turbines [in Russian], Énergoatomizdat, Moscow (1985).

    Google Scholar 

  2. J. H. Wood and E. H. Goldman, “Protective coatings,” in: Superalloys. II. Heat Resistant Materials for Aerospace and Industrial Equipment [Russian translation], Metallurgiya, Moscow (1995), Vol. 2, pp. 88-116.

    Google Scholar 

  3. H. K. Pulker, “Grundlagen der aufbringung dunner schichten unter vakuum,” DRAHT, 43, No. 12, 1003-1008 (1992).

    Google Scholar 

  4. O. Kayser, “Industrielle anwendung von PVD hartstoffbeschichtigung,” Galvanotechnik, 88, No. 5, 1618-1623 (1997).

    Google Scholar 

  5. T. Nakayama, Materia = Mater. Jap. [Nikon kinzoku gakkai Kaiho], 35, No. 4, 360-364 (1996).

    Google Scholar 

  6. ”Thermisches spritzen: der geheime Joker in der oberflachenbeschichtigung,” Galvanotechnik, 88, No. 5, 1624-1625 (1997).

  7. Yu. S. Borisov, “Contemporary achievements in the deposition of protective and hard coatings,” Poroshk. Metall., No. 7, 5-14 (1993).

    Google Scholar 

  8. ”Apply protective coating with electron beam deposition,” Gas Turbine World, 28, No. 6, 42 (1998).

  9. S. A. Mubayadzhan, E. N. Kablov, and S. A. Budinovskii, “Vacuum-plasma technology for obtaining protective coatings on complex alloys,” Metalloved. Term. Obrab. Met., No. 2, 15-18 (1995).

    Google Scholar 

  10. ”Verbesserte termalschutzschichten durch vacuum — plasmaspritzen,” Galvanotechnik, 88, No. 10, 3388 (1997).

    Google Scholar 

  11. J. Folder, N. Stuart, E. DeSilva, and W. Ahmed, “Intensified plasma assisted processing — a novel process in surface coating techniques,” Surface Coat. Int., 82, No. 4, 178-180 (1998).

    Google Scholar 

  12. A. R. Miller, P. Agerwal, and E. S. Duderstadt, “Life modeling of low pressure plasma sprayed thermal barrier coating,” Ceram. Eng. Sci. Proc. 5, Nos. 7-8, 470-478 (1984).

    Google Scholar 

  13. ”Method of applying a laser beam creating micro-scale surface structures prior to deposition of film for increased adhesion,” Pat. 55558789, USA, University of Florida, Publ. 9.24.96.

  14. ”Ion implantation in metal alloys,” Pat. 5199999, USA, Queens University, Publ. 4.04.93. 443

  15. I. Kretshmer and M. Dvorak, “Flammspritzen mit gleichseitigen einschmeltzen: Hochleistungsverfahren zum mechaniziertom gas-pulver-auftragschweissen,” Technica (Suisse), 45, No. 23, 99-102 (1996).

    Google Scholar 

  16. B. A. Éisner, V. I. Nikitin, E. V. Mitor, et al., “Some technical aspects of the vacuum electric-arc deposition of heatresistant coatings on gas turbine blades,” Korrozionnostoikie Pokrytiya, 113-116 (1992).

  17. S. S. Solntsev, V. V. Shvagireva, G. Yu. Denisova, and T. V. Krasnova, “Reaction-sintered coatings for heatresistant alloys,” in: Temperaturoustoichivye Pokrytiya [in Russian], Sborn. Nauch. Tr., Nauka, Leningrad (1985), pp. 237-240.

    Google Scholar 

  18. Xing Xinghua, Zhu Jingchnan, and Yin Zhongda, Trans. Nonferrous Metals Soc. China, 7. No. 1, 106-110 (1997).

    Google Scholar 

  19. A. P. Gulyaev, Metallovedenie [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  20. N. M. Konchegura, I. I. Taranov, M. E. Zamkovoi, et al., “Use of an electron beam for homogenization of heatresistant alloy melts,” Probl. Spets. Élektrometallurgii, No. 1, 31-36 (1995).

    Google Scholar 

  21. N. G. Orekhov, G. M. Glezer, E. A. Kuleshova, and V. N. Toloraiya, “Modern cast heat-resistant alloys for gas turbine blades,” Metalloved. Term. Obrab. Met., No. 7, 32-35 (1993).

    Google Scholar 

  22. A. Sanzs, L. Llanes, J. P. Bernadou, et al., “High temperature fracture mechanism of a coated nickel-base superalloy: influence of the testing mode,” in: ECP 11: Mech. and Mech. Damage and Failure, Proc. 11th Bienn. Eur. Conf. Fracture (Poitiers-Futureoscope, Sept. 3-6, 1996), Warlay (1996), Vol. 2, pp. 1225-1230.

    Google Scholar 

  23. ”Gas turbine, gas turbine blade used therefor, and manufacturing method for gas turbine blade,” Pat. 5620308 USA, Hitach, Ltd.; Tonuko Electric Power Co., Publ. 4.15.97.

  24. ”Rotating blade or stationary vane of a gas turbine,” Pat. 5516381 USA, Mitsubishi jukogyo kk, Publ. 5.14.96.

  25. V. P. Lesnikov, V. P. Kuznetsov, O. V. Repina, et al., “Protective properties of aluminide coatings under the conditions of high-temperature oxidation and corrosion,” Fiz. Khim. Obrab. Mater., No. 4, 56-59 (1996).

    Google Scholar 

  26. ”High temperature-resistant corrosion protection coating for a component, in particular a gas turbine component,” Pat. 559385, USA, Siemens AG, Publ. 2.04.97.

  27. N. V. Abraimov, “Surface alloying and durability of alloy VZhL-12U for gas turbine blades,” in: Heat Resistant Coatings [in Russian], Nauka, Leningrad (1985), pp. 177-180.

    Google Scholar 

  28. E. N. Kablov, G. I. Morozova, G. N. Matveeva, and S. A. Budinovskii, “Phase composition of the diffusion layers of metallic coatings on heat-resistant nickel alloys,” Metalloved. Term. Obrab. Met., No. 12, 20-23 (1994).

    Google Scholar 

  29. N. B. Pugacheva, S. V. Kositsyn, and N. V. Babich, “Thermodiffusional heat-resistant coatings based on ferroalloys with REM,” Fiz. Khim. Obrab. Mater., No. 4, 42-48 (1998).

    Google Scholar 

  30. ”Thermoinsulating coating,” Application 3207849 Japan, Mitsibishi Jukovo K. K., Publ. 9/11/91.

  31. B. E. Paton, G. B. Stroganov, S. T. Kishkin, et al., Heat Resistant Cast Nickel Alloys and Protecting them from Oxidation [in Russian], Nauk. Dumka, Kiev (1987).

    Google Scholar 

  32. D. F. Kalinovich, L. I. Kuznetsova, and É. T. Denisenko, “Zirconium dioxide: properties and applications,” Poroshk. Metall., No. 11, 98-103 (1987).

    Google Scholar 

  33. S. V. Kositsyn, E. S. Salamatova, N. V. Kataeva, et al., “Laser alloying of heat-resistant diffusional coatings for heatresistant nickel alloys,” Zashchit. Pokryt. Metall., No. 26, 64-68 (1992).

    Google Scholar 

  34. G. V. Zemskov, R. L. Kogan, A. S. Sin'kovskii, et al., “Heat resistance of steel with protective coatings,” in: Heat Resistant Coatings [in Russian], Nauka, Leningrad (1985), pp. 168-172.

    Google Scholar 

  35. Xu Wanzen, Meng Qinglin, and Zau Yuchao, “Influence of dispersity Y2O3 particles alloying by laser irradiation on oxidation behavior of a superalloy,” Trans. Nonferrous Metals Soc. China, 3, No. 3, 71-75 (1993).

    Google Scholar 

  36. B. I. Chirkov, A. P. Semenov, and M. S. Sherstennikova, “Mechanical properties of heat-resistant alloys with a composite thermal barrier coating,” Korrozionnostoikie Pokrytiya, 232-236 (1992).

  37. Faure-Geors Alin and Wang Zhirui, “Thermal cycle response of yttria-stabilized zirconia/MeCrAlY thermal barrier coating produced by electron-beam vacuum evaporation,” in: 3rd Int. SAMPE Metals and Metals Process. Conf. (Toronto, Oct. 20-22, 1992), Covina, Calif. (1992), pp. M253-M265.

  38. V. I. Kopylov, Yu. V. Kolesnikov, I. V. Govorov, et al., “Increasing the spraying efficiency and properties of multicomponent gas-flame coatings,” Fiz. Khim. Mekh. Mater., No. 4, 100-105 (1991).

    Google Scholar 

  39. S. Sampath, R. Gansert, and H. Herman, “Plasma-spray forming ceramics and layered composite,” JOM, 47, No. 10, 30-33 (1995).

    Google Scholar 

  40. Yu. S. Borisov, A. L. Borisova, L. K. Shvedova, et al., “Gas-thermal coatings of composite Ti — BN powders,” in: Heat Resistant Coatings [in Russian], Nauka, Leningrad (1985), pp 127-131.

    Google Scholar 

  41. V. N. Antsiferov, S. P. Kosogor, M. L. Lobanov, et al., “Investigation of the effect of spraying parameters on the fine structure and kinetics of gas-abrasive erosion of carbide and nitride coatings,” Zashchit. Pokr. Metall., No. 26, 9-12 (1992).

    Google Scholar 

  42. V. A. Lavrenko and Yu. G. Gogotsi, Corrosion of Structural Ceramics [in Russian], Moscow (1989).

  43. Handbook of Composite Materials (in 2 vols.), Moscow (1988).

  44. V. N. Antsiferov and S. P. Kosogor, “Multilayer vacuum-plasma coatings based on titanium and chromium carbides, their structure and properties,” Fiz. Khim. Obrab. Mater., No. 6, 61-65 (1996).

    Google Scholar 

  45. A. Utsumi, J. Matsuda, M. Yoneda, et al., Koon. Gakkaishi = J. High Temp. Soc., 18, N Suppl, 292-298 (1992).

    Google Scholar 

  46. V. Broiek, J. Vyskocil, “Supertvrde povlaky Ti(C, N, O) sprisadou skandia,” Pokr. Praoek. Met./VUPM, 34, No. 3, 26-31 (1996).

    Google Scholar 

  47. Komai Masao, Taniguchi Aynmu, Shimizu Nobuyoshi, and Tanaka Atsuo, Toyo Kohan = Tech. Repts. Tokyo Kohan Co., 31, 27-36 (1998).

    Google Scholar 

  48. I. A. Vishnevetskaya, N. N. Golego, A. V. Solov'ev, and V. S. Volkov, Trenie i Iznos, 15, No. 2, 227-236 (1994).

    Google Scholar 

  49. Ogbuji Linus U. I. I. “Role of Si2Ni2O in the passive oxidation of chemically-vapor-deposited Si3N4,” J. Amer. Ceram. Soc., 75, No. 11, 2995-3000 (1992).

    Google Scholar 

  50. Chen Jian, Wei Pan, Wang Weiming, et al., “Metallization of Si3N4 surface by molten salt reaction,” J. Mater. Sci. Lett., 16, No. 9, 745-746 (1997).

    Google Scholar 

  51. Liu Yuxian, Wu Fegfang, and Liu Dashen, Jinshu Rechult = Heat Treat. Metals, No. 5, 9-12 (1994).

    Google Scholar 

  52. Yu. V. Dzyadykevich, “Heat-resistant coatings for molybdenum and it alloys,” Poroshk. Metall., No. 2, 41-48 (1988).

    Google Scholar 

  53. G. I. Belyaeva, I. É. Knisheva, A. F. Shcherbakov, and V. N. Pod'yachev, “Stability of multicomponent silicide coatings on niobium alloys at high temperatures,” Zashchit. Pokryt. Metall., No. 27, 58-60 (1993).

    Google Scholar 

  54. V. S. Terent'eva and O. P. Bogachkova, “Heterophase protective coatings for heat-resistant materials,” Materialovedenie, No.9, 2-7 (1998).

    Google Scholar 

  55. V. F. Loskutov, “Increasing the reliability and durability of steel components by the deposition of carbide and boride coatings,” in: Protective Metal and Nonmetal Coatings [in Russian], Kiev (1993), pp. 54-61.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podchernyaeva, I.A., Panasyuk, A.D. Protective Coatings on Heat-Resistant Nickel Alloys (Review). Powder Metallurgy and Metal Ceramics 39, 434–444 (2000). https://doi.org/10.1023/A:1011358221085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011358221085

Navigation