Skip to main content
Log in

A Laterally Interconnected Neural Architecture in MST Accounts for Psychophysical Discrimination of Complex Motion Patterns

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The complex patterns of visual motion formed across the retina during self-motion, often referred to as optic flow, provide a rich source of information describing our dynamic relationship within the environment. Psychophysical studies indicate the existence of specialized detectors for component motion patterns (radial, circular, planar) that are consistent with the visual motion properties of cells in the medial superior temporal area (MST) of nonhuman primates. Here we use computational modeling and psychophysics to investigate the structural and functional role of these specialized detectors in performing a graded motion pattern (GMP) discrimination task. In the psychophysical task perceptual discrimination varied significantly with the type of motion pattern presented, suggesting perceptual correlates to the preferred motion bias reported in MST. Simulated perceptual discrimination in a population of independent MST-like neural responses showed inconsistent psychophysical performance that varied as a function of the visual motion properties within the population code. Robust psychophysical performance was achieved by fully interconnecting neural populations such that they inhibited nonpreferred units. Taken together, these results suggest that robust processing of the complex motion patterns associated with self-motion and optic flow may be mediated by an inhibitory structure of neural interactions in MST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adini Y, Sagi D, Tsodyks M (1997) Excitatory-inhibitory network in the visual cortex: Psychophysical evidence. Proc. Natl. Acad. Sci. 94:10426-10431.

    Google Scholar 

  • Amir Y, Harel M, Malach R (1993) Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. J. Comp. Neurol. 334:19-46.

    Google Scholar 

  • Andersen RA (1997) Neural mechanisms of visual motion perception in primates. Neuron 18:865-872.

    Google Scholar 

  • Andersen RA, Shenoy KV, Crowell JA, Bradley DC (2000). Neural mechanisms for self-motion perception in area MST. In: Neuronal Processing of Optic Flow. Academic Press, New York, pp. 219-234.

    Google Scholar 

  • Beardsley S, Clifford C, Vaina LM (1999) Discrimination of complex motion patterns is consistent with an interconnected population code in MST [ARVO Abstract]. Invest. Ophthalmol. Vis. Sci. 40:S4222. Abstract 2226.

    Google Scholar 

  • Beardsley S, Vaina L (1998) Computational modeling of optic flow selectivity in MSTd neurons. Network: Comput. Neural Syst. 9:467-493.

    Google Scholar 

  • Beardsley S, Vaina LM (2001) Discriminating complex pattern motions: Psychophysical evidence for a global motion mechanism. In preparation.

  • Ben-Yishai B, Bar-Or RL, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. 92:3844-3848.

    Google Scholar 

  • Bremmer F, Duhamel J-R, Ben Hamed S, Werner G (2000) Stages of self-motion processing in primate posterior parietal cortex. In: Neuronal Processing of Optic Flow. Academic Press, New York, pp. 173-198.

    Google Scholar 

  • Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: A comparison of neuronal and psychophysical performance. J. Neurosci. 12:4745-4765.

    Google Scholar 

  • Burr DC, Morrone MC, Vaina LM (1998) Large receptive fields for optic flow detection in humans. Vision Res. 38:1731-1743.

    Google Scholar 

  • Cameron S, Grossberg S, Guenther FH (1998) A self-organizing neural network architecture for navigation using optic flow. Neural Comput. 10:313-352.

    Google Scholar 

  • Celebrini S, Newsome W (1994) Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14:4109-4124.

    Google Scholar 

  • Chey J, Grossberg S, Mingolla E (1998) Neural dynamics of motion processing and speed discrimination. Vision Res. 38:2769-2786.

    Google Scholar 

  • deCharms RC, Zador A (2000) Neural representation and the cortical code. Ann. Rev. Neurosci. 23:613-647.

    Google Scholar 

  • Duffy CJ (2000) Optic flow analysis for self-movement perception. In: Neuronal Processing of Optic Flow. Academic Press, New York, pp. 199-218.

    Google Scholar 

  • Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 65:1329-1345.

    Google Scholar 

  • Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small field stimuli. J. Neurophysiol. 65:1346-1359.

    Google Scholar 

  • Duffy CJ, Wurtz RH (1995) Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 15:5192-5208.

    Google Scholar 

  • Duffy CJ, Wurtz RH (1997) Planar directional contributions to optic flow responses in MST neurons. J. Neurophysiol. 77:782-796.

    Google Scholar 

  • Edelman S (1996) Why have lateral connections in the visual cortex? Lateral interactions in the cortex: Structure and function. The UTCS Neural Networks Research Group. Austin. http: //www.cs.utexas.edu/users/nn/web-pubs/htmlbook96/edelman/.

  • Foldiak P (1993) The 'ideal homunculus'. Statistical inference from neural population responses. In: Computation and Neural Systems. Kluwer Academic Publishers, Norwell, pp. 55-60.

    Google Scholar 

  • Freeman TC, Harris MG (1992) Human sensitivity to expanding and rotating motion: Effects of complementary masking and directional structure. Vision Res. 32:81-87.

    Google Scholar 

  • Geesaman BJ, Andersen RA (1996) The analysis of complex motion patterns by form/cue invariant MSTd neurons. J. Neurosci. 16:4716-4732.

    Google Scholar 

  • Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci. 8:2928-2937.

    Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416-1419.

    Google Scholar 

  • Gilbert C (1992) Horizontal integration and cortical dynamics. Neuron 9:1-13.

    Google Scholar 

  • Gilbert C, Das A, Ito M, Kapadia M, Westheimer G (1996) Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci. USA 93:615-622.

    Google Scholar 

  • Graziano MS, Anderson RA, Snowden R (1994) Tuning of MST neurons to spiral motions. J. Neurosci. 14:54-67.

    Google Scholar 

  • Grossberg S, Mignolla E, Pack C (1999) A neural model of motion processing and visual navigation by cortical area MST. Cerebral Cortex 9:1-18.

    Google Scholar 

  • Hatsopoulos N, Warren WJ (1991) Visual navigation with a neural network. Neural Networks 4:303-317.

    Google Scholar 

  • Haykin S (1999) Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Hertz J, Krogh A, Palmer RG (1991) Introduction to the Theory of Neural Computation. Addison-Wesley, New York.

    Google Scholar 

  • Kalaska JF, Caminiti R, Georgopoulos AP (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: Relations in parietal area 5 and comparison with motor cortex. Exp. Brain Res. 51:247-260.

    Google Scholar 

  • Kisvarday Z, Toth E, Rausch M, Eysel U (1997) Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb. Cortex 7:605-618.

    Google Scholar 

  • Koechlin E, Anton J, Burnod Y (1999) Bayesian interference in populations of cortical neurons: A model of motion integration and segmentation in area MT. Biol. Cybern. 80:25-44.

    Google Scholar 

  • Lagae L, Maes H, Raiguel S, Xiao DK, Orban GA (1994) Responses of macaque STS neurons to optic flow components: A comparison of areas MT and MST. J. Neurophysiol. 71:1597-626.

    Google Scholar 

  • Lappe M (2000) Computational mechanisms for optic flow analysis in primate cortex. Neuronal Processing of Optic Flow. Academic Press, New York, pp. 235-268.

    Google Scholar 

  • Lappe M, Bremmer F, Pekel M, Thiele A, Hoffmann K (1996) Optic flow processing in monkey STS: A theoretical and experimental approach. J. Neurosci. 16:6265-6285.

    Google Scholar 

  • Lappe M, Bremmer F, van den Berg AV (1999) Perception of self-motion from visual flow. Trends in Cognitive Sciences 3:329-336.

    Google Scholar 

  • Lappe M, Duffy C (1999) Optic flow illusion and single neuron behavior reconciled by a population model. Eur. J. Neurosci. im Druck.

  • Lappe M, Rauschecker JP (1993) Aneural network for the processing of optic flowfrom ego-motion in man and higher mammals. Neural Comp. 5:374-391.

    Google Scholar 

  • Lappe M, Rauschecker JP (1995) An illusory transformation in a model of optic flow processing. Vision Res. 35:1619-1631.

    Google Scholar 

  • Liu L, Hulle V (1998) Modeling the surround of MT cells and their selectivity for surface orientation in depth specified by motion. Neural Comput. 10:295-312.

    Google Scholar 

  • Lukashin AV, Georgopoulos AP (1993) A dynamical neural network model for motor cortical activity during movement: Population coding of movement trajectories. Biol. Cybern. 69:517-524.

    Google Scholar 

  • Lukashin AV, Georgopoulos AP (1994) A neural network for coding of trajectories by time series of neuronal population vectors. Neur. Comp. 6:19-28.

    Google Scholar 

  • Lukashin AV, Wilcox GL, Georgopoulos AP (1996) Modeling of directional operations in the motor cortex: A noisy network of spiking neurons is trained to generate a neural-vector trajectory. Neural Networks 9:397-410.

    Google Scholar 

  • Lund J, Yoshioka T, Levitt J (1993) Comparison of intrinsic connectivity in different areas of the macaque monkey cerebral cortex. Cereb. Cortex 3:148-162.

    Google Scholar 

  • Malach R, Schirman T, Harel M, Tootell R, Malonek D (1997) Organization of intrinsic connections in owl monkey area MT. Cereb. Cortex 7:386-393.

    Google Scholar 

  • Miikkulainen R, Sirosh J (1996) Introduction: The emerging understanding of lateral interactions in the cortex. Lateral interactions in the cortex: Structure and function. UTCS Neural Networks Research Group, Austin. http://www.cs.utexas.edu/users/nn/webpubs/htmlbook96/miikkulainen/.

    Google Scholar 

  • Morrone C, Burr D, Vaina L (1995) Two stages of visual processing for radial and circular motion. Nature 376:507-509.

    Google Scholar 

  • Nowlan SJ, Sejnowski TJ (1995) A selection model for motion processing in area MT of primates. J. Neurosci. 15:1195-1214.

    Google Scholar 

  • Oram MW, Foldiak P, Perrett DI, Sengpiel F (1998) The 'ideal homunculus': Decoding neural population signals. Trends in Neurosci. 21:365.

    Google Scholar 

  • Orban GA, Lagae L, Raiguel S, Xiao D, Maes H (1995) The speed tuning of medial superior temporal (MST) cell responses to optic-flow components. Perception 24:269-285.

    Google Scholar 

  • Orban GA, Lagae L, Verri A, Raiguel S, Xiao D, Maes H, Torre V (1992) First-order analysis of optical flow in monkey brain. Proc. Nat. Acad. Sci. 89:2595-2599.

    Google Scholar 

  • Perrone J, Stone L (1994) A model of self-motion estimation within primate extrastriate visual cortex. Vision Res. 34:2917-2938.

    Google Scholar 

  • Perrone JA, Stone LS (1998) Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation. J. Neurosci. 18:5958-5975.

    Google Scholar 

  • Pouget A, Zhang K, Deneve S, Latham PE (1998) Statistically efficient estimation using population coding. Neural Comput. 10:373-401.

    Google Scholar 

  • Regan D, Beverley KI (1978) Looming detectors in the human visual pathway. Vision Res. 18:415-421.

    Google Scholar 

  • Regan D, Beverley KI (1979) Visually guided locomotion: Psychophysical evidence for a neural mechanism sensitive to flow patterns. Science 205:311-313.

    Google Scholar 

  • Regan D, Beverley KI (1985) Visual responses to vorticity and the neural analysis of optic flow. J. Opt. Soc. Am. 2:280-283.

    Google Scholar 

  • Saito H-A, Yukie M, Tanaka K, Hikosaka K, FukadaY, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci. 6:145-157.

    Google Scholar 

  • Sakai K, Miyashita Y (1991) Neural organization for the long-term memory of paired associates. Nature 354:152-155.

    Google Scholar 

  • Salinas E, Abbott L (1994) Vector reconstruction from firing rates. J. Comput. Neurosci. 1:89-107.

    Google Scholar 

  • Salinas E, Abbott L (1995) Transfer of coded information from sensory to motor networks. J. Neurosci. 15:6461-6474.

    Google Scholar 

  • Sanger TD (1996) Probability density estimation for the interpretation of neural population codes. J. Neurophysiol. 76:2790-2793.

    Google Scholar 

  • Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J. Neurosci. 8:2913-2827.

    Google Scholar 

  • Seung HS, Sompolinsky H (1993) Simple models for reading neuronal population codes. Neurobiol. 90:10749-10753.

    Google Scholar 

  • Shadlen M, Newsome W (1994) Noise, neural codes, and cortical organization. Curr. Opin. Neurobiol. 4:569-579.

    Google Scholar 

  • Shadlen M, Newsome W (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 18:3870-3896.

    Google Scholar 

  • Snippe H (1996) Parameter extraction from population codes: A critical assessment. Neural Comp. 8:511-530.

    Google Scholar 

  • Snowden RJ, Milne AB (1996) The effects of adapting to complex motions: Position invariance and tuning to spiral motions. J. Cog. Neurosci. 8:412-429.

    Google Scholar 

  • Softky W (1995) Simple codes versus efficient codes. Curr. Opin. Neurobiol. 5:239-247.

    Google Scholar 

  • Softky W, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13:334-350.

    Google Scholar 

  • Stemmler M, Usher M, Niebur E (1995) Lateral interactions in primary visual cortex: A model bridging physiology and psychophysics. Science 269:1877-1880.

    Google Scholar 

  • Sundareswaran V, Vaina LM (1995) Perceptual learning of direction discrimination in global motion: Psychophysics and computational modeling [ARVO Abstract]. Invest. Ophthalmol. Vis. Sci. 36:S377. Abstract 1782.

    Google Scholar 

  • Sundareswaran V, Vaina LM (1996) Adaptive computational models of fast learning of motion direction discrimination. Biol. Cybern. 74:319-329.

    Google Scholar 

  • Tanaka K, Fukada Y, Saito H-A (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62:642-656.

    Google Scholar 

  • Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62:626-641.

    Google Scholar 

  • Taylor JG, Alavi F (1996) A basis for long-range inhibition across cortex. Lateral interactions in the Cortex: Structure and function. UTCS Neural Networks Research Group, Austin. http: //www.cs.utexas.edu/users/nn/web-pubs/htmlbook96/taylor/.

    Google Scholar 

  • Te Pas SF, Kappers AM, Koenderink JJ (1996) Detection of first-order structure in optic flow fields. Vision Res. 36:259-270.

    Google Scholar 

  • Vaina L (1998) Complex motion perception and its deficits. Curr. Opin. Neurobiol. 8:494-502.

    Google Scholar 

  • Vaina L, Sundareswaran V, Harris J (1995) Learning to ignore: Psychophysics and computational modeling of fast learning of direction in noisy motion stimuli. Cog. Brain Res. 2:155-163.

    Google Scholar 

  • van den Berg AV (2000) Human ego-motion perception. In: Neuronal Processing of Optic Flow. Academic Press, New York, pp. 3-25.

    Google Scholar 

  • Wang R (1995) A simple competetive account of some response properties of visual neurons in area MSTd. Neural Comp. 7:290-306.

    Google Scholar 

  • Wang R (1996) A network model for the optic flow computation of the MST neurons. Neural Networks 9:411-426.

    Google Scholar 

  • Wiskott L, von der Malsburg C (1996) Face recognition by dynamic link matching. Lateral interactions in the cortex: Structure and function. UTCS Neural Networks Research Group, Austin. http: //www.cs.utexas.edu/users/nn/web-pubs/htmlbook96/wiskott/.

    Google Scholar 

  • Worgotter F, Niebur E, Christof K (1991) Isotropic connections generate functional asymmetrical behavior in visual cortical cells. J. Neurophys 66:444-459.

    Google Scholar 

  • Zemel R, Dayan P, Pouget A (1998) Probabilistic interpretation of population codes. Neural Comp. 10:403-430.

    Google Scholar 

  • Zemel RS, Sejnowski TJ (1998) A model for encoding multiple object motions and self-motion in area MST of primate visual cortex. J. Neurosci. 18:531-547.

    Google Scholar 

  • Zhang K, Sereno M, Sereno M (1993) Emergence of position-dependent detectors of sense of rotation and dilation with Hebbian learning: An analysis. Neural Comp. 5:597-612.

    Google Scholar 

  • Zohary E (1992) Population coding of visual stimuli cortical neurons tuned to more than one dimension. Biol. Cybern. 66:265-272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beardsley, S.A., Vaina, L.M. A Laterally Interconnected Neural Architecture in MST Accounts for Psychophysical Discrimination of Complex Motion Patterns. J Comput Neurosci 10, 255–280 (2001). https://doi.org/10.1023/A:1011264014799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011264014799

Navigation