Skip to main content
Log in

Microtubule motors, phosphorylation and axonal transport of neurofilaments

  • Published:
Journal of Neurocytology

Abstract

The recent demonstration that the axonal transport motors kinesin and dynein participate in axonal transport of neurofilaments (NFs), and that the association of NFs with these motors is regulated by phosphorylation provides new insight into several aspects of axonal transport and NF biology. This review juxtaposes older and more recent findings on NF dynamics, and speculates on the organization of axonal NFs as suggested by real-time analyses of NF transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AHMAD, F. J., ECHEVERRI, C. J., VALLEE, R. B. & BAAS, P. W. (1998) Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. Journal of Cell Biology 140, 391-401.

    Google Scholar 

  • AHMAD, F. J., HUGHEY, J., WITTMANN, T., HYMAN, A., GREASER, M. & BAAS, P. W. (2000) Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nature Cell Biology 2, 276-280.

    Google Scholar 

  • ANDERTON, B. H., BREINBURG, D., DOWNES, M. J., GREEN, P. J., TOMLINSON, B. E., ULRICH, J., WOOD, J. N., & KAHN, J. (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature 298, 84-86.

    Google Scholar 

  • BORCHELT, D. R., WONG, P. C., BECHER, M. W., PARDO, C. A., LEE, M. K., XU, Z. S., THINAKARAN, G., JENKINS, N. A., COPELAND, N. G., SISODIA, S. S., CLEVELAND, D. W., PRICE, D. L. & HOFFMAN, P. N. (1998) Axonal transport of mutant superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice. Neurobiology of Disease 5, 27-35.

    Google Scholar 

  • BRADY, S. T. (1993) Motor neurons and neurofilaments in sickness and health. Cell 73, 1-3.

    Google Scholar 

  • BRADY, S. T. (2000) Neurofilaments run sprints not marathons. Nature Cell Biology 2, E43-E45.

    Google Scholar 

  • BROWN, A. (1998) Continguous phosphorylated and nonphosphorylated domains along axonal neurofilaments. Journal of Cell Science 111, 455-467.

    Google Scholar 

  • BROWN, A. (2000) Slow axonal transport: Stop and go traffic in the axon. Nature Reviews Molecular Cell Biology 1, 153-156.

    Google Scholar 

  • COOKSON, M. R. & SHAW, P. J. (1999) Oxidative stress and motor neurone disease. Brain Pathology 9, 165-186.

    Google Scholar 

  • CHOU, Y.-H. & GOLDMAN, R. D. (2000) Intermediate filaments on the move. Journal of Cell Biology 150, F101-F105.

    Google Scholar 

  • DILLMAN, III, J. F., DABNEY, L. P. & PFISTER, K. K. (1996) Functional analysis of dynactin and cytoplasmic dynein in slow axonal transport. Proceedings of the National Academy of Science 93, 141-144.

    Google Scholar 

  • ELLURU, R. G., BLOOM, G. S. & BRADY, S. T. (1995) Fast axonal transport of kinesin in the rat visual system: functionality of kinesin heavy chain isoforms. Molecular Biology of the Cell 6, 21-40.

    Google Scholar 

  • EYER, J. & LETERRIER, J. F. (1988) Influence of the phosphorylation state of neurofilament proteins on the interactions between purified filaments in vitro. Journal of Biochemistry 252, 655-660.

    Google Scholar 

  • GALBRAITH, J. A., REESE, T. J., SCHLIEF, M. L. & GALLANT P. E. (1999) Slow transport of umpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proceedings of the National Academy of Science 96, 11589-11594.

    Google Scholar 

  • GIASSON, B. I. & MUSHYNSKI, W. E. (1996) Aberrant stress-induced phosphorylation of perikaryal neurofilaments. Journal of Biological Chemistry 271, 30404-30409.

    Google Scholar 

  • GIASSON, B. I. & MUSHYNSKI, W. E. (1997) Study of proline-directed protein kinases involved in phosphorylation of the heavy neurofilament subunit. Journal of Neuroscience 17, 9466-9472.

    Google Scholar 

  • GLASS, J. D. & GRIFFIN, J. W. (1991) Neurofilament redistribution in transected nerves: evidence for bidirectional transport of neurofilaments. Journal of Neuroscience 11, 3146-3154.

    Google Scholar 

  • GLASS, J. D. & GRIFFIN, J. W. (1994) Retrograde transport of radiolabeled cytoskeletal proteins in transected nerves. Journal of Neuroscience 14, 3915-3921.

    Google Scholar 

  • GOTOW, T. & TANAKA, J. (1994) Phosphorylation of neurofilament H subunit as related to arrangement of neurofilaments. Journal of Neuroscience Research 37, 691-713.

    Google Scholar 

  • GUIDATO, S., TSAI, L.-H., WOODGETT, J. & MILLER, C. J. (1996) Differential cellular phosphorylation of neurofilament heavy side-arms by glycogen synthase kinase-3 and cyclin-dependent kinase-5. Journal of Neurochemistry 66, 1698-1706.

    Google Scholar 

  • HAAFEZPARAST, M., WITHERDEN, A., NICHOLSON, S., BERMINGHAM, N., MACKIN, J., TEN ASBROEK, A., BALL, S., PETERS, J., BAAS, F., MARTIN, J. E. & FISHER, E. M. (1999) kinesin light chain gene: its mapping and exclusion in mouse and human forms of inherited motor neuron degeneration. Neuroscience Letters 273, 49-52.

    Google Scholar 

  • HIROKAWA, N. (1993) Axonal transport and the cytoskeleton. Current Opinions in Neurobiology 3, 724-731.

    Google Scholar 

  • JULIEN, J.-P. & MUSHYNSKI, W. E. (1998) Neurofilaments in health and disease. Progress in Nucleic Acid Research and Molecular Biology 61, 1-20.

    Google Scholar 

  • JUNG, C., YABE, J. T., LEE, S. & SHEA, T. B. (2000a) Hypophosphorylated neurofilament subunits undergo axonal transport more rapidly than more extensively phosphorylated subunits in situ. Cell Motility and the Cytoskeleton 47, 120-129.

    Google Scholar 

  • JUNG, C., YABE, J. T. & SHEA, T. B. (2000b) C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity. Brain Research 856, 12-19.

    Google Scholar 

  • JUNG, C., YABE, J., WANG, F.-S. & SHEA, T. B. (1998) Neurofilaments are present within axonal neurites before incorporation into Triton-insoluble structures. Cell Motility and the Cytoskeleton 40, 44-58.

    Google Scholar 

  • JUNG, C. & SHEA, T. B. (1999) Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ. Cell Motility and the Cytoskeleton 43, 230-240.

    Google Scholar 

  • JUNG, C., YABE, J. T. & SHEA, T. B. (2000) C-terminal phosphorylation of the heavy molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity. Brain Research 856, 12-19.

    Google Scholar 

  • KOEHNLE, T. J. & BROWN, A. (1999) Slow axonal transport of neurofilament protein in cultured neurons. Journal of Cell Biology 144, 447-458.

    Google Scholar 

  • LASEK, R. J., GARNER, J. A. & BRADY, S. T. (1985) Axonal transport of the cytoplasmic matrix. Journal of Cell Biology 99, 212s-221s.

    Google Scholar 

  • LASEK, R. J., PAGGI, P. & KATZ, M. J. (1992) Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons. Journal of Cell Biology 117, 607-616.

    Google Scholar 

  • LASEK, R. J., PAGGI, P. & KATZ, M. J. (1993) The maximum rate of neurofilament transport in axons: A view of molecular transport mechanisms continuously engaged. Brain Research 616, 58-64.

    Google Scholar 

  • LETERRIER, J.-F. & EYER, J. (1987) Properties of highly viscous gels formed by neurofilaments in vitro. A possible consequence of specific inter-filament cross-bridging. Biochemical Journal 245, 93-101.

    Google Scholar 

  • LETERRIER, J.-F., KÄS, J., HARTWIG, J., VEGNERS, R. & JANMEY, P. (1996) Mechanical effects of neurofilament cross-bridges. Journal of Biological Chemistry 271, 15687-15694.

    Google Scholar 

  • LI, B. S., VEERANNA, GU, J., GRANT, P. & PANT, H. C. (1999) Activation of mitogen-activated protein kinases (Erk1 and Erk2) cascade results in phosphorylation of NF-Mtail domains in transfectedNIH3T3 cells. European Journal of Biochemistry 262, 211-217.

    Google Scholar 

  • LIAO, G. & GUNDERSEN, G. G. (1998) Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. Journal of Biological Chemistry 273, 9797-9803.

    Google Scholar 

  • MA, D., HIMES, B. T., SHEA, T. B. & FISCHER, I. (2000) Axonal transport of microtubule-associated protein 1B (MAP1B) in the sciatic nerve of adult rat: Distinct transport rates for different isoforms. Journal of Neuroscience 20, 2122-2120.

    Google Scholar 

  • NIXON, R. A. (1993) The regulation of neurofilament protein dynamics by phosphorylation: Clues to neurofibrillary pathology. Brain Pathology 3, 29-38.

    Google Scholar 

  • NIXON, R. A. (1998) The slow transport of cytoskeletal proteins. Current Opinion in Cell Biology 10, 87-92.

    Google Scholar 

  • NIXON, R. A. & LOGVINENKO K B (1986) Multiple fates of newly synthesized neurofilament proteins: Evidence for a stationary neurofilament network distributed non-uniformly along axons of retinal ganglion cell neurons. Journal of Cell Biology 102, 647-659.

    Google Scholar 

  • OCHS, S. (1975) A unitary concept of axoplasmic transport based on the transport filament hypothesis. In Recent Advances in Myology (edited by BRADLEY, WG et al.,) Excerpta Medica 360 pp. 189-94, Amsterdam.

  • PANT, H. C. & VEERANNA (1995) Neurofilament phosphorylation. Biochemistry and Cell Biology 73, 575-592.

    Google Scholar 

  • PRAHLAD, V., YOON, M., MOIR, R. D., VALE, R. D. & GOLDMAN, R. D. (1998) Rapid movement of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. Journal of Cell Biology 143, 159-170.

    Google Scholar 

  • PRAHLAD, V., HEFLAND, G. T., LANGFORD G. M., VALE, R. D. & GOLDMAN, R. D. (1998) Fast transport of neurofilament proteins along microtubules in squid axoplasm. Journal of Cell Science 113, 3939-3946.

    Google Scholar 

  • RATNER, N., BLOOM, G. S. & BRADY, S. T. (1998) A role for cyclin-dependent kinases(s) in the modulation of fast axonal transport: effects defined by olomoucine and the APC suppressor protein. Journal of Neuroscience 18, 7717-7726.

    Google Scholar 

  • ROY, S., COFFEE, P., SMITH, G., LIEM, R. K. H., BRADY, S. T. & BLACK, M. M. (2000) Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. Journal of Neuroscience 20, 6849-6861.

    Google Scholar 

  • SANCHEZ, I., HASSINGER, L., SIHAG, R. K., CLEVELAND, D. W., MOHAN, P. & NIXON, R. A. (2000) Local control of neurofilament accumulation during radial growth of myelinating axons in vivo: selective role of site-specific phosphorylation. Journal of Cell Biology 151, 1013-1024.

    Google Scholar 

  • SAXTON, W. M. (1994) Isolation and analysis of microtubule motor proteins. Methods in Cell Biology 44, 279-288.

    Google Scholar 

  • SCHMIDT, M. L., CARDEN, M. J., LEE, V. M.-Y. & TROJANOWSKI, J. Q. (1987) Phosphate dependent and independent neurofilament epitopes in the axonal swellings of patients with motor neuron disease and controls. Laboratory Investigation 56, 282-294.

    Google Scholar 

  • SHARMA, M., SHARMA, P. & PANT, H. C. (1999) CDK-5-mediated neurofilament phosphorylation in SHSY5Y human neuroblastoma cells. Journal of Neurochemistry 73, 79-86.

    Google Scholar 

  • SHAH, J. V., FLANAGAN, L. A., JANMEY, P. A. & LETERRIER, J.-FL. (2000) Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Molecular Biology of the Cell 11, 3495-3508.

    Google Scholar 

  • SHAW, G. & HOU, Z.-C. (1990) Bundling and cross-linking of intermediate filaments of the nervous system. Journal of Neuroscience Research 25, 561-568.

    Google Scholar 

  • SHEA, T. B. (1990) Neuritogenesis in mouse NB2a/d1 neuroblastoma cells: triggering by calcium influx and involvement of actin and tubulin dynamics. Cell Biology International Reports 14, 967-979.

    Google Scholar 

  • SHEA, T. B. & YABE, J. T. (2000) Occam's razor slices through the mysteries of neurofilament axonal transport: can it really be so simple? Traffic 1, 522-523.

    Google Scholar 

  • SHEA, T. B., SIHAG, R. K. & NIXON, R. A. (1990) Dynamics of phosphorylation and assembly of the high Axonal transport of neurofilaments molecular weight NF subunit in NB2a/d1 neuroblastoma. Journal of Neurochemistry 55, 1784-1792.

    Google Scholar 

  • STRAUBE-WEST, K., LOOMIS, P. A., OPAL, P. & GOLDMAN, R. D. (1996) Alterations in neuronal intermediate filament organization, functional implications and the induction of pathological changes related to motor neuron disease. Journal of Cell Science 109, 2319-2329.

    Google Scholar 

  • SUN, D, LEUNG, C. L. & LIEM, R. K. (1996) Phosphorylation of the high molecular weight neurofilament protein (NF-H) by cdk5 and p35. Journal of Biological Chemistry 271, 14245-14251.

    Google Scholar 

  • TASHIRO, T. & KOMIYA, Y. (1989) Stable and dynamic forms of cytoskeletal proteins in slow axonal transport. Journal of Neuroscience 9, 760-768.

    Google Scholar 

  • TOYOSHIMA, I., KATO, K., SUGAWARA, M., WADA, C. & MASAMUNE, O. (1998a) Kinesin accumulation in chick spinal axonal swellings with beta, beta'-iminodipropionitrile (IDPN) intoxication. Neuroscience Letters 249, 103-106.

    Google Scholar 

  • TOYOSHIMA, I., SUGAWARA, M., KATO, K., WADA, C., HIROTA, K., HASEGAWA, K., KOWA, H., SHEETZ, M. P. & MASAMUNE, O. (1998b) Kinesin and cytoplasmic dynein in spinal spheroids with motor neuron disease. Journal of Neurological Science 159, 38-44.

    Google Scholar 

  • TU, P. H., GURNEY, M. E., JULIEN, J.-P., LEEM, V. M.-Y. & TROJANOWSKI, J. Q. (1997) Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease. Laboratory Investigation 76, 441-456.

    Google Scholar 

  • VEERANNA, SHETTY, K. T., LINK, W. T., JAFFE, H., WANG, J. & PANT, H. C. (1995) Neuronal cyclindependent kinase-5 phosphorylation sites in neurofilament protein (NF-H) are dephosphorylated by protein phosphatase 2A. Journal of Neurochemistry 64, 2681-2690.

    Google Scholar 

  • VEERANNA, AMIN, N. D., AHN, N. G., JAFFE, H., WINTERS, C. A., GRANT, P. & PANT, H. C. (1998) Mitogen-activated protein kinases (Erk1, 2) phosphorylate Lys-Ser-Pro (KSP) repeats in neurofilament proteins NF-H and NF-M. Journal of Neuroscience 18, 4008-4021.

    Google Scholar 

  • WANG, L., HO, C.-I., SUN, D., LIEM, R. K. H. & BROWN, A. (2000) Rapid movements of axonal neurofilaments interrupted by prolonged pauses. Nature Cell Biology 2, 137-141.

    Google Scholar 

  • WATSON, D. F., GRIFFIN, J. W., FITTRO, K. P. & HOFFMAN, P. N. (1989) Phosphorylation-dependent immunoreactivity of neurofilaments increases during axonal maturation and β, β'-iminodipropionitrile intoxication. Journal of Neurochemistry 53, 1818-1829.

    Google Scholar 

  • WATSON, D. F., GLASS, J. D. & GRIFFIN, J. W. (1993) Redistribution of cytoskeletal proteins in mammalian axons disconnected from their cell bodies. Journal of Neuroscience 13, 4354-4360.

    Google Scholar 

  • WILLIAMSON, T. L. & CLEVELAND, D. W. (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neuroscience 2, 50-56.

    Google Scholar 

  • WINDORFFER, R. & LEUBE, R. E. (1999) Detection of keratin dynamics by time-lapse fluorescence microscopy in living cells. Journal of Cell Science 112, 4521-4534.

    Google Scholar 

  • YABE, J. T., PIMENTA, A. & SHEA, T. B. (1999) Kinesinmediated transport of neurofilament protein oligomers. Journal of Cell Science 112, 3799-3814.

    Google Scholar 

  • YABE, J. T., JUNG, C., CHAN, W. K.-H. & SHEA, T. B. (2000) Phospho-dependent association of neurofilament proteins with kinesin in situ. Cell Motility and the Cytoskeleton 45, 249-262.

    Google Scholar 

  • YABE, J. T., CHAN, W. K.-H., CHYLINSKI, T. M., LEE, S., PIMENTA, A. F. & SHEA, T. B. (2001a) The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation and maturation. Cell Motility and the Cytoskeleton 48, 61-83.

    Google Scholar 

  • YABE, J. T., CHYLINSKI, T. M., WANG, F.-S., PIMENTA, A. F., KATTAR, S. D., LINSLEY, M.-D., CHAN, W. K.-H. & SHEA, T. B. (2001b) Neurofilaments consist of distinct populations that can be distinguished by Cterminal phosphorylation, bundling and axonal transport rate in growing axonal neurites. Journal of Neuroscience, in press.

  • ZHANG, J. H., SAMPOGNA, S., MORALES, F. R. & CHASE, M. H. (1997) Age-related alterations in immunoreactivity of the midsized neurofilament subunit in the brainstem reticular formation of the cat. Brain Research 769, 196-200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shea, T.B. Microtubule motors, phosphorylation and axonal transport of neurofilaments. J Neurocytol 29, 873–887 (2000). https://doi.org/10.1023/A:1010951626090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010951626090

Keywords

Navigation