Skip to main content
Log in

A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 1. Development of the Basic Method

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we present the development of a generator of hybrid explicit methods for the numerical solution of the Schrödinger equation. The methods are of algebraic order ten. The coefficients of the generator are calculated appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Simos, Explicit two-step methods with minimal phase-lag for the numerical integration of special second order initial value problems and their application to the one-dimensional Schrödinger equation, J. Comput. Appl. Math. 39 (1992) 89–94.

    Google Scholar 

  2. J.D. Lambert and I.A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl. 18 (1976) 189–202.

    Google Scholar 

  3. L. Bruca and L. Nigro A one-step method for direct integration of structural dynamic equations, Internat. J. Numer. Methods Engrg. 15 (1980) 685–699.

    Google Scholar 

  4. M.M. Chawla and P.S. Rao, A Numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems, J. Comput. Appl. Math. 11 (1984) 277–281.

    Google Scholar 

  5. M.M. Chawla and P.S. Rao, Numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problem. II. Explicit method, J. Comput. Appl. Math. 15 (1986) 329–337.

    Google Scholar 

  6. M.M. Chawla, P.S. Rao and B. Neta, Two-step fourth-order P-stable methods with phase-lag of order six for y″ = f (t,y), J. Comput. Appl. Math 16 (1986) 233–236.

    Google Scholar 

  7. M.M. Chawla and P.S. Rao, An explicit sixth-order method with phase-lag of order eight for y″ = f (t,y), J. Comput. Appl. Math. 16 (1987) 365–368.

    Google Scholar 

  8. J.P. Coleman, Numerical methods for y″ = f (x, y) via rational approximation for the cosine, IMA J. Numer. Anal. 9 (1989) 145–165.

    Google Scholar 

  9. T.E. Simos and A.D. Raptis, Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation, Computing 45 (1990) 175–181.

    Google Scholar 

  10. T.E. Simos, New variable-step procedure for the numerical integration of the one-dimensional Schrödinger equation, J. Comput. Phys. 108 (1993) 175–179.

    Google Scholar 

  11. G. Avdelas and T.E. Simos, Block Runge-Kutta methods for periodic initial-value problems, Comput. Math. Appl. 31 (1996) 69–83.

    Google Scholar 

  12. G. Avdelas and T.E. Simos, Embedded methods for the numerical solution of the Schrödinger equation, Comput. Math. Appl. 31 (1996) 85–102.

    Google Scholar 

  13. T.E. Simos, New embedded explicit methods with minimal phase-lag for the numerical integration of the Schrödinger equation, Comput. Chem. 22 (1998) 433–440.

    Google Scholar 

  14. T.E. Simos, Numerical solution of ordinary differential equations with periodical solution, Doctoral Dissertation, National Technical University of Athens (1990).

  15. R.M. Thomas, Phase properties of high order, almost P-stable formulae, BIT 24 (1984) 225–238.

    Google Scholar 

  16. T.E. Simos and G. Tougelidis, A Numerov type method for computing eigenvalues and resonances of the radial Schrödinger equation, Comput. Chem. 20 (1996) 397–401.

    Google Scholar 

  17. L.D. Landau and F.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965).

    Google Scholar 

  18. I. Prigogine and S. Rice, eds., New Methods in Computational Quantum Mechanics, Advances in Chemical Physics, Vol. 93 (Wiley, New York, 1997).

    Google Scholar 

  19. T.E. Simos, Eighth order methods for accurate computations for the Schrödinger equation, Comput. Phys. Comm. 105 (1997) 127–138.

    Google Scholar 

  20. T.E. Simos, Explicit eighth order methods for the numerical integration of initial-value problems with periodic or oscillating solutions, Comput. Phys. Comm. 119 (1999) 32–44.

    Google Scholar 

  21. G. Avdelas, A. Konguetsof and T.E. Simos, A generator of hybrid explicit methods for the numerical solution of the Schrödinger equation and related problems, Comput. Phys. Comm. (2000), in press.

  22. T.E. Simos, Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem, J. Math. Chem. 21 (1997) 359–372.

    Google Scholar 

  23. T.E. Simos, Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations, J. Math. Chem. 24 (1998) 23–37.

    Google Scholar 

  24. T.E. Simos, A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation, J. Math. Chem. 25 (1999) 65–84.

    Google Scholar 

  25. G. Avdelas and T.E. Simos, Embedded eighth order methods for the numerical solution of the Schrödinger equation, J. Math. Chem. 25 (1999) 327–341.

    Google Scholar 

  26. J. Vigo-Aguiar and T.E. Simos, A family of P-stable eighth algebraic order methods with exponential fitting facilities, J. Math. Chem., to appear.

  27. T.E. Simos and P.S. Williams, On finite difference methods for the solution of the Schrödinger equation, Comput. Chem. 23 (1999) 513–554.

    Google Scholar 

  28. T.E. Simos, in: Atomic Structure Computations in Chemical Modelling: Applications and Theory, ed. A. Hinchliffe, UMIST (The Royal Society of Chemistry, 2000) pp. 38–142.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.E. Simos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdelas, G., Konguetsof, A. & Simos, T. A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 1. Development of the Basic Method. Journal of Mathematical Chemistry 29, 281–291 (2001). https://doi.org/10.1023/A:1010947219240

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010947219240

Navigation