Skip to main content
Log in

Cellular Basis of Steroid Neuroprotection in the Wobbler Mouse, a Genetic Model of Motoneuron Disease

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The Wobbler mouse suffers an autosomal recessive mutation producing severe motoneuron degeneration and astrogliosis in the spinal cord. It has been considered a suitable model of human motoneuron disease, including the sporadic form of amyotrophic lateral sclerosis (ALS).

2. Evidences exist demonstrating increased oxidative stress in the spinal cord of Wobbler mice, whereas antioxidant therapy delayed neurodegeneration and improved muscle trophism. 21-Aminosteroids are glucocorticoid-derived hydrophobic compounds with antioxidant potency 3 times higher than vitamin E and 100 times higher than methylprednisolone. They do not bind to intracellular receptors, and prevent lipid peroxidation by insertion into membrane lipid bilayers.

3. In common with the spinal cord of ALS patients, Wobbler mice present astrocytosis with hyperexpression of glial fibrillary acidic protein (GFAP), and increased expression of nitric oxide synthase (NOS) and growth-associated protein (GAP-43) in motoneurons. Here, we review our studies on the effects of a 21-aminosteroid on GFAP, NOS, and GAP-43.

4. First, we showed that 21-aminosteroid treatment further increased GFAP-expressing astrocytes in gray matter of the Wobbler spinal cord. This effect may provide neuroprotection if one considers a trophic and beneficial function of astrocytes during the course of degeneration. Other neuroprotectans used in Wobbler mice (T-588) also increased preexisting astrocytosis.

5. Second, histochemical determination of NADPH-diaphorase, a parameter indicative of neuronal NOS activity, showed that the 21-aminosteroid down-regulated the high activity of this enzyme in ventral horn motoneurons. Therefore, suppression of nitric oxide by decreasing NADPH-diaphorase (NOS) activity may provide neuroprotection considering that excess NO is highly toxic to motoneurons.

6. Finally, 21-aminosteroid treatment significantly attenuated the aberrant expression of both GAP-43 protein and mRNA in Wobbler motoneurons. Hyperexpression of GAP-43 possibly indicated abnormal synaptogenesis, denervation, and muscle atrophy, parameters which may return to normal following antioxidant steroid treatment.

7. Besides 21-aminosteroids, other steroids also behave as neuroprotectans. In this regard, degenerative diseases may constitute potential targets of these hormones, based on the fact that the spinal cord expresses in a regional and cell-specific fashion, receptors for androgens, progesterone, adrenal steroids, and estrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abe, K., Morita, S., Kikuchi, T., and Itoyama, Y. (1997). Protective effect of a novel free-radical scavenger, OPC-14117, on wobbler mouse motor neuron disease. J. Neurosci. Res. 48:63-70.

    Google Scholar 

  • Aït-Ikhlef, A., Hantaz-Ambroise, D., Henerson, C. E., and Rieger, F. (2000). Influence of factors secreted by Wobbler astrocytes on neuronal and motoneuronal survival. J. Neurosci. Res. 59:100-106.

    Google Scholar 

  • Amyotrophic lateral sclerosis. (1984). Hope through research, National Institutes of Health Publication No. 84-916, Bethesda, MD.

  • Beck, T., and Bielenbergm, G. W. (1991). The effects of two 21-aminosteroids on overt infarct size 48 hours after middle cerebral artery occlusion in the rat. Brain Res. 560:159-162.

    Google Scholar 

  • Benowitz, L. I., and Routtenberg, A. (1997). GAP-43: An intrinsic determinant of neuronal development and plasticity. TINS 20:84-91.

    Google Scholar 

  • Blennow, K., Bogdanovic, N., Gottfries, C.-G., and Davidsson, P. (1999). The growth-associated protein GAP-43 is increased in the hippocampus and in the gyrus cinguli in schizophrenia. J. Mol. Neurosci. 13:101-109.

    Google Scholar 

  • Bradley, W. G. (1996). Overview of motor neuron disease: Classification and nomenclature. Clin. Neurosci. 3:323-326.

    Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1984). Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilamenta degradation and energy metabolism. J. Neurosurg. 61:290-295.

    Google Scholar 

  • Chao, H. M., Sakai, R. R., Ma, M. Y., and McEwen, B. S. (1998). Adrenal steroid regulation of neurotrophic factor expression in the rat hippocampus. Endocrinology 139:3112-3118.

    Google Scholar 

  • Clowry, G. J., and McHanwell, S. (1996). Expression of nitric oxide synthease by motor neurons in the spinal cord of the mutant mouse wobbler. Neurosci. Lett. 215:177-180.

    Google Scholar 

  • Cohen, G., and Autor, A. P. (1982). Oxygen radicals, hydrogen peroxide, and Parkinson's disease. In Pathology of Oxygen, Academic Press, New York, pp. 115-126.

    Google Scholar 

  • Cudkowicz, M. E., and Brown, R. H. (1998). Amyotrophic lateral sclerosis and related motor neuron diseases. In Jameson, J. L. (ed.), Principles of Molecular Medicine, Humana Press, Clifton, pp. 907-911.

    Google Scholar 

  • Curtis, R., Averill, S., Priestley, J. V., and Wilkin, G. P. (1993a). The distribution of GAP-43 in the normal spinal cord. J. Neurocytol. 22:39-50.

    Google Scholar 

  • Curtis, R., Green, D., Lindsay, R. M., and Wilkin, G. P. (1993b). Up-regulation of GAP-43 and growth of axons in rat spinal cord after compression. J. Neurocytol. 22:51-64.

    Google Scholar 

  • De la Monte, S. M., Ng, S.-C., and Hsu, D. W. (1995). Aberrant GAP-43 gene expression in Alzheimer's disease. Am. J. Pathol. 147:934-946.

    Google Scholar 

  • De Nicola, A. F. (1993). Steroid hormones and neuronal regeneration. In Seil, F. J. (ed.), Advances in Neurology, Raven Press, New York, 52, pp. 199-206.

    Google Scholar 

  • De Nicola, A. F. (2000). Fisiología de la corteza suprarrenal. In Houssay B., and Cingolani, H. (eds.), Fisiología Humana de Houssay, El Ateneo, Buenos Aires, pp. 657-670.

    Google Scholar 

  • Deng, Y. P., Li, X. S., Zhang, S. H., and Vacca-Galloway, L. L. (1996). Changes in receptor levels for tyrotrophin releasing hormone, serotonin, and substance P in cervical spinal cord of Wobbler mouse: A quantitative autoradiography study during early and late stages of the motoneuron disease. Brain Res. 725:49-60.

    Google Scholar 

  • Duchen, L. W., Falconer, D. S., and Strich, S.J. (1965). Hereditary progressive neurogenic muscular atrophy in the mouse. J. Physiol. (London) 183:53P-55P.

    Google Scholar 

  • Duchen, L. W., and Strick, S. J. (1968). An hereditary motor neurone disease with progressive denervation of muscle in the mouse: The mutant “Wobbler.” J. Neurol. Neurosurg. Psychiatry 31:535-542.

    Google Scholar 

  • Enfors, P. A., Henschen, P. F., Olson, L., and Persson, H. (1989). Expression of nerve growth factor receptor mRNA is developmentally regulated and increase after axotomy in rats spinal cord motoneurons. Nature 2:1605-1613.

    Google Scholar 

  • Eng, L. F. (1985). Glial fibrillary acidic protein (GFAP): The major protein of glial intermediate filaments indifferentiated astrocytes. J. Neuroimmunol. 8:203-214.

    Google Scholar 

  • Fiszman, M. L., Borodinsky, L. N., Ricart, K. C., Sanz, O. P., and Sica, R. E. (1999). Cu/Zn superoxide dismutase activity al different ages in sporadic amyotrophic lateral sclerosis. J. Neurol. Sci. 162:34-37.

    Google Scholar 

  • González Deniselle, M. C., González, S. L, Lima, A., Wilkin, G., and De Nicola, A. F. (1999a). The 21-aminosteroid U-74389F attenuates hyperexpression of GAP-43 and NADPH-Diaphorase in the spinal cord of Wobbler mouse, a model for Amyotrophic Lateral Sclerosis. Neurochem. Res. 24(1):1-8.

    Google Scholar 

  • González Deniselle, M. C., González, S., Piroli, G., Lima, A., and De Nicola, A. F. (1996). The 21-Aminosteroid U-74389F increases the number of glial acidic protein-expressing astrocytes in the spinal cord of control and wobbler mice. Cell. Mol. Neurobiol. 16:61-72.

    Google Scholar 

  • González Deniselle, M. C., Grillo, C., González, S., Roig, P., and De Nicola, A. F. (1999b). Evidence for down-regulation of GAP-43 mRNA in Wobbler mouse spinal motoneurons by Corticosterone and a 21-aminosteroid. Brain Res. 841:78-84.

    Google Scholar 

  • González Deniselle, M. C., Lavista LLanos, S., Ferrini, M., Lima, A., Roldán, A. and De Nicola, A. F. (1999c). In vitro differences between astrocytes of control of Wobbler mice spinal cord. Neurochem. Res. 24:1535-1541.

    Google Scholar 

  • Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., Caliendo, J., Hentati, A., Kwon, Y. W., Deng, H. X., Chen, W., Zhai, P., Sufit, R. L., Siddique, T. (1994). Motor Neuron Degeneration in Mice that Express a Human Cu,Zn Superoxide Dismutase Mutation. Science 264:1772-1775.

    Google Scholar 

  • Hall, E. D. (1992). The neuroprotective pharmacology of methylprednisolone. J. Neurosurg. 76:13-22.

    Google Scholar 

  • Hall, E. B. (1993). Neuroprotective actions of glucocorticoid and nonglucocorticoid steroids in acute neuronal injury. Cell. Mol. Neurobiol. 13:415-432.

    Google Scholar 

  • Hall, E. D., Braughler, M., Yonkers, P. A., Smith, S. L., Linseman, K. L., Means, E. D., Scherch, H. M., Von Voigtlander, P. F., Lahti, R. A., and Jacobsen, E. J. (1991). U-78517F: A potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J. Pharmacol. Exp. Ther. 258:688-694.

    Google Scholar 

  • Hantai, D., Akaaboune, M., Lagord, C., Murawsky, M., Houenou, L. J., Festoff, B. W., Vaught, J. L., Rieger, F., and Blondet, B. (1995). Beneficial of insulin-like growth factor-I on wobbler mouse motoneuron disease. J. Neurol. Sci. 129 (Suppl.): 122-126.

    Google Scholar 

  • Hantaz-Ambroise, D., Blondet, B., Murawsky, M., and Rieger, F. (1994). Abnormal astrocyte differentiation and deffective cellular interactions in wobbler mouse spinal cord. J. Neurocytol. 23:179-192.

    Google Scholar 

  • Hantaz-Ambroise, D., Cambier, D., Aït-Ikhlef, A., Parvy, Ph., Murawsky, M., and Rieger, F. (1995). Excess Extracellular and Low intracellular Glutamate in Poorly Differentiating Wobbler Astrocytes and Astrocyte Recovery in Glutamine-Depleted Cultured Medium. J. Neurochem. 65:1199-1204.

    Google Scholar 

  • Henderson, C. E. (1986). Roel of neurotrophic factors in neuronal development. Curr. Opin, Biol. 6:64-70.

    Google Scholar 

  • Henderson, J. T., Javaher, I. M., Kopko, S., and Roder, J. C. (1996). Reduction of lower motor neuron degeneration in wobbler mice by n-acetyl-1-cysteine. J. Neurosci. 16:7574-7582.

    Google Scholar 

  • Ikeda, K., Iwasaki, Y., Ichikawa, Y., Kinoshita, M., Marubuchi, S., and Ono, S. (2000a). T-588, a novel neuropromoter, enhances function of central and peripheral motor system in Wobbler murine motor neuron disease. Soc. Neurosci. Abstr. 26(Part 1): 236.

    Google Scholar 

  • Ikeda, K., Iwasaki, Y., and Kinoshita, M. (1998). Neuronal nitric oxide synthease inhibitor, 7-nitroindazole, delays motor dysfunction and spinal motoneuron degeneration in the wobbler mouse. J. Neurol. Sci. 160:1, 9–15.

    Google Scholar 

  • Ikeda, K., Iwasaki, Y., Kinoshita, M., Marubuchi, S., and Ono, S. (2000b). T-588, a novel neuroprotective agent, delays progression of neuromuscular dysfunction in wobbler mouse motoneuron disease. Brain Res. 858:84-91.

    Google Scholar 

  • Ikeda, K., Iwasaki, Y., Tagaya, N., Shiojima, T., Kobayashi, T., and Kinoshita, M. (1995a). Neuroprotective effect of basic fibroblast growth factor on wobbler mouse motoneuron disease. Neurol. Res. 17:445-448.

    Google Scholar 

  • Ikeda, K., Kinoshita, M., Iwasaki, K., Tayaga, N., and Shiojima, T. (1995b). Lecithinized superoxide dismutase retards wobbler mouse motoneuron disease. Neuromusc. Disord. 5:383-393.

    Google Scholar 

  • Ikeda, K., Kinoshita, M., Tagaya, N., Shiojima, T., Taga, T., Yasukawa, K., Suzuki, H., and Okano, A. (1996). Coadministration of interleukin-6 (IL-6) receptor delays progression of wobbler mouse motor neuron disease. Brain Res. 726(1/2): 91-97.

    Google Scholar 

  • Jones, K. A., Drenlger, S. M., and Oblinger, M. (1997). Gonadal steroid regulation of growth associated protein GAP-43 mRNA expression in axotomized hamster facial motor neurons. Neurochem. Res. 22:1367-1374.

    Google Scholar 

  • Junier, M. P., Coulpier, M., Le Forestier, N., Cadusseau, J., Suzuki, F., Peschanski, M., and Dreyfus, P. A. (1994). Transforming growth factor alpha (TGF alpha) expression in degerenating motoneurons of the murine mutant Wobbler: A neuronal signal for astrogliosis? J. Neurosci. 14:4206-4216.

    Google Scholar 

  • Junier, M. P., Legendre, P., Esguerra, C. V., Tinel, M., Coulpier, M., Dreyfus, P. A., and Bahr, M. (1998). Regulation of growth factor gene expression in degenerating motoneurons of the murine mutant wobbler: A cellular patch-sampling/RT-PCR study. Mol. Cell. Neurosci. 12:168-177.

    Google Scholar 

  • Kapfhammer, J. P., and Schwab, M. E. (1994). Inverse patterns of myelination and GAP-43 expression in the adult CNS: Neurite growth inhibitors as regulators of neuronal plasticity. J. Comp. Neurol. 340:194-206.

    Google Scholar 

  • Kaupmann, K., Simon-Chazottes, D., Guener, J. L., and Jokusch, H. (1992). Wobbler, a mutation affecting motoneuron survival and gonadal functions in the mouse, maps to proximal chromosome 11. Genomics 13:39-43.

    Google Scholar 

  • Laage, S., Zoberl, G., and Jockusch, H. (1988). Astrocyte overgrowth in the brain stem and spinal cord of mice affected by spinal atrophy, Wobbler. Dev. Neurosci. 10:190-198.

    Google Scholar 

  • Laping, N. J., Teter, B., Nichols, N. R., Rozovsky, I., and Finch, C. E. (1994). Glial fibrillary acidic protein: Regulation by hormones cytokines, and growth factors. Brain Pathol. 1:259-275.

    Google Scholar 

  • Li, M., Ona, V. O., Guegan, C., Chen, M., Jackson-Lewis, V., Andrews, L. J., Olsewski, A. J., Stieg, P. E., Lee, J. P., Przedborski, S., and Friedlander, R. M. (2000). Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288:335-339.

    Google Scholar 

  • Liedtke, W., Edelmann, W., Bieri, P. L., Chiu, F. Ch., Cowan, N. J., Kucherlapati, R., and Raine, C. S. (1996). GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17:607-615.

    Google Scholar 

  • Ma, W., and Vacca-Galloway, L. L. (1991). Reduced branching and length of dendrites detected in cervical spinal cord motoneurons of wobbler mouse, a model for inherited motoneuron disease. J. Comp. Neurol. 311:210-222.

    Google Scholar 

  • Magistretti, P. J., and Pellerin, L. (1999). Astrocytes couple synaptic activity to glucose utilization in the brain. New Phisiol. Sci. 14:177-182.

    Google Scholar 

  • McCall, J. M., Hall, E. D., and Braughler, J. M. (1989). A new class of 21-aminosteroids which are useful for stroke and trauma. In Capildeo, R. (ed.), Steroids and Disease of the Central Nervous System, Wiley, New York, pp. 69-80.

    Google Scholar 

  • McEwen, M. S. (1999). The molecular and neuroanatomical basis for estrogen effects in basis for estrogen effects in the central neurvous system. J. Clin. Endocr. Metab. 84:1790-1797.

    Google Scholar 

  • McKeon, R. J., Schreiber, R. C., Rudge, J. S., and Silver, J. (1991). Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11:3398-3411.

    Google Scholar 

  • Metzinger, L., Passaquin, A.-C., Wenier, A., Thiriet, N., Warter, J.-M., and Poindron, P. (1994). Lazaroids enhance skeletal myogenesis in primary cultures of dystrophin-deficient mdx mice. J. Neurol. Sci. 126:138-145.

    Google Scholar 

  • Mitsumoto, H., and Bradley, W. G. (1982). Murine motor neuron disease (the Wobbler mouse): Degeneration and regeneration of the lower motor neuron. Brain Res. 105:811-834.

    Google Scholar 

  • Mitsumoto, H., and Gambetti, P. (1986). Impaired slow axonal transport in wobbler mouse motor neuron disease. Ann. Neurol. 19:36-43.

    Google Scholar 

  • Mitsumoto, H., Ikeda, K., Klinkosz, B., Cedarbaum, J. M., Wong, V., and Lindsay, R. M. (1994). Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265:1107-1110.

    Google Scholar 

  • Muyarama, S., Inoue, K., Kawakami, H., Bouidin, T. W., and Suzuki, K. (1991). A unique pattern of astrocytosis in the primary motor area in amyotrphic lateral sclerosis. Acta Neuropathol. (Berlin) 82:456-461.

    Google Scholar 

  • Norenberg M. D. (1994). Astrocytes responses to CNS Injury. J. Neuropathol. Exp. Neurol. 53:213-220.

    Google Scholar 

  • Oestreicher, A. B., De Graan, P. N. E., Guispen, W. H., Verhaagen, J., and Schrame, L. H. (1997). B-50, the growth associated protein-43: Modulation of cell morphology and communication in the nervous system. Prog. Neurobiol. 53:627-686.

    Google Scholar 

  • Parhad, I. M., Oishi, R., and Clarck, A. W. (1992). GAP-43 gene expression is increased in anterior horn cells of amyotrphic lateral sclerosis. Ann. Neurol. 31:593-597.

    Google Scholar 

  • Popper, P., Farber, D. B., Micevych, P. E., Minoofar, K., and Bronstein, J. M. (1997). RTPM-2 expression and tunel staining in neurodegenerative diseases: studies in wobbler and rd mice. Exp. Neurol. 143:246-254.

    Google Scholar 

  • Price, D. L., Cleveland, D. W., and Koliatsis, V. E. (1994). Motor neuron disease and animal models. Neurobiol. Dis. 1:3-11.

    Google Scholar 

  • Resink, A., Dawson, V. L., and Dawson, T. D. (1996). Nitric oxide synthase inhibitors. CNS Drugs 6:351-367.

    Google Scholar 

  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., and Sapp, P., et al. (1993). Mutations in Cu-Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59-62.

    Google Scholar 

  • Schumacher, M., Akwa, I., Guennoun, R., Robert, F., Labombarda, F., Desarnaud, F., Robel, P., De Nicola, A. F., and Baulieu, E. E. (2000). Steroid synthesis and metabolism in the nervous system: Trophic and protective effects. J. Neurocytol. 29:307-326.

    Google Scholar 

  • Smith, M. E., and Hughes, S. (1994). POMC neuropeptides and their receptors in the neuromuscular system of wobbler mice. J. Neurol. Sci. 124:56-58.

    Google Scholar 

  • Spooren, W. P. J. M., and Hengerer, B. (2000). DNA laddering and caspase 3-like activity in the spinal cord cord of a mouse model of amyotrophic lateral sclerosis. Cell. Mol. Biol. 46:63-69.

    Google Scholar 

  • Wilkin, G. P., Marriot, D. R., and Cholewinski, A. J. (1990). Astrocyte heterogeneity. TINS 13:43-46.

    Google Scholar 

  • Yung, K. K. L., Tang, F., and Vacca-Galloway, L. L. (1982). Changes of neuropeptides in spinal cord and brain stem of Wobbler mouse at different stages of motoneuron disease. Neuroscience 50:209-222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deniselle, M.C.G., González, S.L. & De Nicola, A.F. Cellular Basis of Steroid Neuroprotection in the Wobbler Mouse, a Genetic Model of Motoneuron Disease. Cell Mol Neurobiol 21, 237–254 (2001). https://doi.org/10.1023/A:1010943104315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010943104315

Navigation