Skip to main content
Log in

NMR Study of Chain Motion in Atactic Polypropylene at High Pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Deuteron solid-state NMR techniques at high pressure are used to study the chain dynamics in the amorphous polymer atactic polypropylene. The arrest of the structural relaxation above the glass-transition temperature Tgis investigated using one- and two-dimensional deuteron NMR spectra. The slow reorientation of the main chain segments is identified with the α-process observed in mechanical relaxation experiments. On approaching the glass transition, the time scale of the collective motion of the main chain becomes longer very rapidly at decreasing temperatures. Along isobars, at pressure values up to 5 kbar, the temperature dependence of the logarithmic average correlation time is very well described by a Vogel–Fulcher function. The motion of the main chain is strongly dependent on the pressure, while its character is determined mainly by the distance to Tg. The introduction of the equation of state allows the investigation of the dynamic behavior on isothermal and isochoric paths on approaching Tg. It is found that along an isotherm the mobility as a function of the density is also of the Vogel–Fulcher form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77:3701 (1955).

    Google Scholar 

  2. J. D. Ferry, Viscoelastic Properties of Polymers(John Wiley & Sons, New York, 1961).

    Google Scholar 

  3. H. Vogel, Z. Phys. 22:645 (1921).

    Google Scholar 

  4. G. S. Fulcher, J. Am. Ceram. Soc. 8:339, 789 (1925).

    Google Scholar 

  5. G. Tammann and W. Z. Hesse, Z. Anorg. Allgem. Chem. 156:245 (1926).

    Google Scholar 

  6. D. Schaefer, H. W. Spiess, U. W. Suter, and W. W. Fleming, Macromolecules 23:3431 (1990).

    Google Scholar 

  7. D. Schaefer and H. W. Spiess, J. Chem. Phys. 97:7944 (1992).

    Google Scholar 

  8. A. Dekmezian, D. E. Axelson, J. J. Dechter, B. Bohra, and L. Mandelkern, J. Polym. Sci. Polym. Phys. Ed. 23:367 (1985).

    Google Scholar 

  9. A. G. S. Hollander, Ph.D. thesis (University of Amsterdam, Amsterdam, 1998); copies are available on request.

    Google Scholar 

  10. J. H. Davis, K. R. Jeffrey, M. Bloom, M. I. Valic, and T. P. Higgs, Chem. Phys. Lett. 42:390 (1976).

    Google Scholar 

  11. D. Schaefer, J. Leisen, and H. W. Spiess, J. Mag. Res. A 115:60 (1995).

    Google Scholar 

  12. G. E. Pake, J. Chem. Phys. 16:327 (1948).

    Google Scholar 

  13. K. Schmidt-Rohr and H. W. Spiess, Multidimensional Solid-State NMR and Polymers(Academic Press, London, 1994).

    Google Scholar 

  14. S. Kaufmann, S. Wefing, D. Schaefer, and H. W. Spiess, J. Chem. Phys. 93:197 (1990).

    Google Scholar 

  15. C. Schmidt, B. Blümich, and H. W. Spiess, J. Mag. Res. 79:269 (1988).

    Google Scholar 

  16. S. Wefing, S. Kaufmann, and H. W. Spiess, J. Chem. Phys. 89:1234 (1988).

    Google Scholar 

  17. K. Schmidt-Rohr and H. W. Spiess, Phys. Rev. Lett. 66:3020 (1991).

    Google Scholar 

  18. R. Kohlrausch, Ann. Phys. 12:393 (1847).

    Google Scholar 

  19. G. Williams and D. C. Watts, Trans. Faraday Soc. 66:80 (1970).

    Google Scholar 

  20. S. Wefing and H. W. Spiess, J. Chem. Phys. 89:1219 (1988).

    Google Scholar 

  21. M. S. Greenfield, A. D. Ronemus, R. L. Vold, R. R. Vold, P. D. Ellis, and T. E. Raidy, J. Mag. Res. 72:89 (1987).

    Google Scholar 

  22. H. Sillescu, J. Chem. Phys. 54:2110 (1971).

    Google Scholar 

  23. A. Abragam, The Principles of Nuclear Magnetism(Clarendon Press, Oxford, 1961).

    Google Scholar 

  24. P. A. Rodgers, J. Appl. Polym. Sci. 48:1061 (1993).

    Google Scholar 

  25. R. D. Maier, R. Thomann, J. Kressler, R. Muelhaupt, and B. Rudolf, J. Polym. Sci. B Polym. Phys. 35:1135 (1997).

    Google Scholar 

  26. P. Zoller and D. J. Walsh, Standard Pressure-Volume-Temperature Data for Polymers(Technomic, Lancaster, PA, 1995).

    Google Scholar 

  27. P. G. Tait, Phys. Chem. 2:1 (1888).

    Google Scholar 

  28. G. Rehage and H.-J. Oels, High Temp. High Press. 9:545 (1977).

    Google Scholar 

  29. P. Zoller, J. Polym. Sci. Polym. Phys. 20:1453 (1982).

    Google Scholar 

  30. G. Adam and J. H. Gibbs, J. Chem. Phys. 43:139 (1965).

    Google Scholar 

  31. J. Jäckle, Rep. Prog. Phys. 49:171 (1986).

    Google Scholar 

  32. J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28:373 (1958).

    Google Scholar 

  33. E.A. DiMarzio and J. H. Gibbs, J. Chem. Phys. 28:807 (1958).

    Google Scholar 

  34. G. Parisi, in The Oscar Klein Centenary, U. Lindström, ed. (World Scientific, Singapore, 1995).

    Google Scholar 

  35. E. Passaglia and H. K. Kevorkian, J. Appl. Phys. 34:90 (1963).

    Google Scholar 

  36. P. J. Flory, Statistical Mechanics of Chain Molecules(Hansen, New York, 1969).

    Google Scholar 

  37. R.-J. Roe, Advances in Polymer Science 116(Springer-Verlag, Berlin Heidelberg, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollander, A.G.S., Prins, K.O. NMR Study of Chain Motion in Atactic Polypropylene at High Pressure. International Journal of Thermophysics 22, 357–375 (2001). https://doi.org/10.1023/A:1010762528795

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010762528795

Navigation