Skip to main content
Log in

Coulomb Systems with Ideal Dielectric Boundaries: Free Fermion Point and Universality

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A two-component Coulomb gas confined by walls made of ideal dielectric material is considered. In two dimensions at the special inverse temperature β=2, by using the Pfaffian method, the system is mapped onto a four-component Fermi field theory with specific boundary conditions. The exact solution is presented for a semi-infinite geometry of the dielectric wall (the density profiles, the correlation functions) and for the strip geometry (the surface tension, a finite-size correction of the grand potential). The universal finite-size correction of the grand potential is shown to be a consequence of the good screening properties, and its generalization is derived for the conducting Coulomb gas confined in a slab of arbitrary dimension ≥2 at any temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Šamaj, J. Stat. Phys. 103:737 (2001).

    Google Scholar 

  2. L. Šamaj and I. Travěnec, J. Stat. Phys. 101:713 (2000).

    Google Scholar 

  3. F. Cornu and B. Jancovici, J. Stat. Phys. 49:33 (1987).

    Google Scholar 

  4. F. Cornu and B. Jancovici, J. Chem. Phys. 90:2444 (1989).

    Google Scholar 

  5. P. J. Forrester, J. Chem. Phys. 95:4545 (1990).

    Google Scholar 

  6. P. J. Forrester, J. Stat. Phys. 67:433 (1992).

    Google Scholar 

  7. B. Jancovici and G. Tìllez, J. Stat. Phys. 82:609 (1996).

    Google Scholar 

  8. E. R. Smith, J. Phys. A: Math. Gen. 15:1271 (1982).

    Google Scholar 

  9. B. Jancovici, J. Stat. Phys. 29:263 (1982).

    Google Scholar 

  10. Z. M. Sheng and H. B. Gao, Int. J. Mod. Phys. A 11:4089 (1996).

    Google Scholar 

  11. J. D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998).

    Google Scholar 

  12. A. C. Aitken, Determinants and Matrices (Interscience, New York, 1956).

    Google Scholar 

  13. J. Zinn-Justin, QuantumField Theory and Critical Phenomena (Oxford University Press, New York, 1989).

    Google Scholar 

  14. P. Ramond, in Field Theory: A Modern Primer, D. Pines, ed. (Benjamin, Reading, 1981).

    Google Scholar 

  15. Ph. A. Martin, Rev. Mod. Phys. 60:1075(1988).

    Google Scholar 

  16. J. L. Cardy, in Fields, Strings and Critical Phenomena, Les Houches 1988, E. Brezin and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1990).

    Google Scholar 

  17. P. J. Forrester, J. Stat. Phys. 63:491 (1991).

    Google Scholar 

  18. Ph. Choquard, P. Favre, and Ch. Gruber, J. Stat. Phys. 23:405(1980).

    Google Scholar 

  19. H. Totsuji, J. Chem. Phys. 75:871 (1981).

    Google Scholar 

  20. P. J. Forrester and M. L. Rosinberg, Int. J. Mod. Phys. B 4:943 (1990).

    Google Scholar 

  21. S. Skorik, Topics in 2D integrable field theories with boundary interactions, hep-th/9604174.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jancovici, B., Šamaj, L. Coulomb Systems with Ideal Dielectric Boundaries: Free Fermion Point and Universality. Journal of Statistical Physics 104, 753–775 (2001). https://doi.org/10.1023/A:1010332822814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010332822814

Navigation