Skip to main content
Log in

A New Critical Behavior for Nonlinear Wave Equations

  • Published:
Journal of Computational Analysis and Applications

Abstract

We study the inhomogeneous semilinear wave equations\(\Delta u{\text{ + }}\left| u \right|^p - u_{tt} + w = 0\) on \({\text{M}}^n \times \left( {0,\infty } \right)\)with initial values \(u\left( {x,0} \right) = u_0 \left( x \right)\) and \(u_t \left( {x,0} \right) = v_0 \left( x \right)\),where \({\text{M}}^n \) is a noncompact, complete manifold. We founda new critical behavior in the following sense. There exists ap* > 0. When 1 < pp*, the above problem hasno global solution for any nonnegative \(w = w\left( x \right)\) not identicallyzero and for any \(u_0 \) and \(v_0 \); when\(p > p^* \) the problem has a global solution for some\(w = w\left( x \right) > 0\) and some \(u_0 \) and \(v_0 \). If\({\text{M}}^n = {\text{R}}^n \), which is equipped with the Euclideanmetric, then \(p^* = n/\left( {n - 2} \right),n \geqslant 3\). If\(n = 3\) we show that \(p^* = 3\) belongs to the blow upcase. Although homogeneous semilinear wave equations are known to exhibit acritical behavior for a long time, this seems to be the first result oninhomogeneous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Baras and M. Pierre, CriteÂre d'existence de solutions positives pour des eÂquations semi-line aires non monotones, Ann. Inst. PoincareÂ, Analyse Non LineÂaire 2, 185–212 (1985).

    Google Scholar 

  2. H. Fujita, On the blowup of solutions of the Cauchy problem for u tu + u, 1.+a; J. Fac. Sci. Univ. Tokyo, Sect. I, 13, 109–124 (1966).

    Google Scholar 

  3. R. Glassey, Finite time blowup for solutions of nonlinear wave equations, Math. Z. 177, 323–340 (1981).

    Google Scholar 

  4. V. Georgiev, H. Lindblad, and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math. 119, 1291–1319 1997.

    Google Scholar 

  5. F. John, Blowup of solutions of nonlinear wave equations in three dimensions, Man. Math. 28, 235–268 (1979).

    Google Scholar 

  6. T. Kato, Blowup of solutions of some nonlinear hyperbolic equations, Commun. Pure Appl. Math. 32, 501–505 (1980).

    Google Scholar 

  7. H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form P utt = – Au + F (u), Trans. AMS. 192, 1–21 (1974).

    Google Scholar 

  8. H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32, 269–288 (1990).

    Google Scholar 

  9. H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math. 118, 1047–1135 (1996).

    Google Scholar 

  10. P. Li and S. T. Yau, On the parabolic kernel of the SchroÈ dinger operator, Acta Math. 156, 153–201 (1986).

    Google Scholar 

  11. J. Schaeffer, Finite time blowup for u tt- Εu H (u r; ut). in two space dimensions, Commun. PDE, 11, 513–545 (1986).

    Google Scholar 

  12. T. Sideris, Nonexistence of global solutions of semilinear wave equations in high dimensions, J. Di€. Eq. 52, 378–406 (1984).

    Google Scholar 

  13. W. A. Strauss, Nonlinear wave equations, CBMS AMS 73, (1993).

  14. F. Treves, Basic Linear Partial Di€erential Equations, Academic Press, New York, 1975.

    Google Scholar 

  15. Qi S. Zhang, Nonlinear parabolic problems on manifolds and non-existence result of the non-compact Yamabe problem, Elect. Res. Announce. AMS 3, 45–51 (1997).

    Google Scholar 

  16. Qi S. Zhang, Blowup results for nonlinear parabolic equations on manifolds, Duke Math. J. 97, 515–539.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q.S. A New Critical Behavior for Nonlinear Wave Equations. Journal of Computational Analysis and Applications 2, 277–292 (2000). https://doi.org/10.1023/A:1010156504128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010156504128

Navigation