Skip to main content
Log in

Photochemistry of Nanostructured Materials for Energy Applications

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

A number of major disciplines have separately developed as distinctfields of energy research utilizing nanostructure materials: i.Heterogeneous photocatalysis; ii. Photoelectrochemistry—includingelectrochemical photovoltaic cells; iii. Photochemistry in zeolites andintercalated materials; iv. Photochemistry of thin films andmembranes—including self assembled structures; and v. Supramolecularphotochemistry. Photophysical properties of small particles, in the angstromto nanosized regime—depending on specific material, resulting in bandgap broadening as compared to bulk properties, and corresponding phenomenawith organic dyes as a function of aggregate size having relevance to energyrelated applications are discussed, as are dielectric confinement effectscontrolling the geometric distribution of light absorption within aparticle, aggregate or adsorbed molecular deposit. Synergism among fieldshas emerged, as for example with transition metal oxide photocatalysts andphotoelectrodes, combined with supramolecular spectral sensitizingtransition metal ligand complexes used to harvest light and vectoriallytransfer photo-generated electrons and holes along selected energeticpathways. Two systems have already demonstrated potential for significantlyreducing reliance on fossil fuels and concomitant environmental stress.These are: i. Pollution remediation with wide band gap semiconductingparticulate and nanoporous photocatalysts; and ii. Electrochemicalphotovoltaic cells utilizing nanoporous semiconducting electrodes fabricatedby lightly sintering nanosized TiOÄ2É particulates, followed byspectral sensitization with tri-nuclear ruthenium ligand dyes.Heterojunction contacts between inorganic photoconducting particulates,termed photocatalytic diodes, and three phase systems, termed photocatalytictransistors, have been demonstrated to increase photocatalytic conversionefficiency in catalytic processes and to increase light sensitivity ofanalogous silver halide photographic systems. Research being carried out inlaboratories throughout the world, aimed at improving the efficiency andunderstanding of the multi-disciplinary processes involved are described.Suggested areas of investigation for achievement of short (∼5 years) andlong term (5–20 years) goals are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.K. Wilson, “Zero-Valent Metals Provide Possible Solution To Groundwater Problems”, Chemical and Engineering News July 3, p. 19 (1995).

  2. F.W. Wilkins and D.M. Blake, ``Use Solar Energy to Drive Chemical Processes'', Chemical Engineering Progress, June, p. 41 (1994).

  3. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrey-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc., 115, 6382 (1993).

    Google Scholar 

  4. B. Levy, ``Photocatalytic and photographic heterojunctions,'' in Photochem. Conv. Storage of Solar Energy; eds. E. Pelizzetti and M. Schiavello, Kluwer Acad. Pub., 1991, p. 337 (1991).

  5. H. Tributsch, Solar Energy Materials and Solar Cells, 31, 548 (1994).

    Google Scholar 

  6. V. Balzani, Supramolecular Photochemistry (Reidel Publishing Co., 1987).

  7. M.G. Bawendi, ``Synthesis and Spectroscopy of II-VI Quantum Dots: An Overview,'' Confined Electrons and Photons, edited by E. Burstein and C. Weisbuch, Plenum Press, NY, p. 339, 1995.

    Google Scholar 

  8. D.M. Blake, ``Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air'' (1994).

  9. D.M. Blake, ``Solar Photochemistry-Twenty Years of Progress, What's Been Accomplished, and Where Does It Lead'', NREL/TP-430-6084, DE94006906 (1995).

  10. M. Grätzel, Heterogeneous Photochemical Electron Transfer (CRC Press, Boca Raton, FL, 1989).

    Google Scholar 

  11. A. Henglein, Topics in Current Chemistry, 143, 113 (1988).

    Google Scholar 

  12. P.V. Kamat, Prog. Reaction Kinetics, 19, 277 (1994).

    Google Scholar 

  13. N.S. Lewis, Accounts Chem. Res., 41, 21 (1990).

    Google Scholar 

  14. R. Memming, ``Photoelectrochemical utilization of solar energy,'' in Photochemistry and Photophysics, vol. II, ed. J.F. Rabek, CRC Press, Boca Raton, FL, p. 143, (1990).

    Google Scholar 

  15. A.J. Nozic, ``Size quantization effects in photocatalysis'', in Photocatalytic Purification and Treatment of Water and Air, eds. D.F. Ollis, and H. Al-Ekabi, p. 39 (1993).

  16. A.J. Nozic, Sol. Energ. Mat. Sol. Cells, 38, 327 (1995).

    Google Scholar 

  17. N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals and Applications (Wiley, New York, 1989).

    Google Scholar 

  18. N. Serpone, R. Terzian, D. Lawless, and J.-M. Herrmann, in Advances in Electron Transfer Chemistry, 3, 33 (1993).

    Google Scholar 

  19. M.L. Steigewald and L.E. Brus, Acc. Chem. Res. 23, 183 (1990).

    Google Scholar 

  20. H. Tributsch, ``Photoelectrocatalysis'', in Photocatalysis: Fundamentals and Applications, eds., N. Serpone and E. Pelizzetti, Wiley, New York, p. 339 (1989).

    Google Scholar 

  21. A.J. Nozic and S.E. Ronco, eds. (1996) ``Research Opportunities in Photochemical Sciences'', DOE/BES Workshop, February 5–8, Estes Park, CO. Available on Internet at: http://www.er.doe.gov.production/bes/chm/photochem/ wkshop.html

  22. A. Fujishima and K. Honda, Nature, 238, 37 (1972).

    Google Scholar 

  23. J. Bardeen, ``Semiconductor Research Leading to the Point Contact Transistor,'' Nobel Prize in Physics Award Address, Elsevier Publishing Co. 1956.

  24. Y. Nakato and H. Tsubomura, J. Photochemistry, 29, 257 (1985).

    Google Scholar 

  25. Y. Nakato, H. Yano, S. Nishiura, T. Ueda, and H. Tsubomura, J. Electroanal. Chem., 228, 97 (1987).

    Google Scholar 

  26. A. Heller, Y. Degani, D.W. Johnson, and P.K. Gallagher, J. Phys. Chem., 91, 5987 (1987).

    Google Scholar 

  27. M. Grätzel, ``Vectorial Electron Transfer in Organized Assemblies and Colloidal Semiconductors'' in Supramolecular Photochemistry, edited by V. Balzani, Reidel Publ. Co., Dordrect, 435 (1987).

    Google Scholar 

  28. C.R. Dickson and B. Levy, J. Photogr. Sci. Eng., 18, 524 (1974).

    Google Scholar 

  29. Y. Wang and N. Heron, J. Phys. Chem., 95, 525 (1991).

    Google Scholar 

  30. T.-G. Zhang and B. Levy, ``Field assisted charge transport in dye sensitized AgX and Pt-TiO2-Dye particulate heterojunctions'', in Proceedings of the International Conference of Photographic Science (ICPS'94), May 15–20, Rochester, New York.

  31. K. Takahasi and M. Konagai, Amorphous Silicon Solar Cells (John Wiley and Sons, NY, 124, 1986).

    Google Scholar 

  32. C. Zou, M.R.V. Sahyun, M.E. Mueller, B. Levy, and T.-G. Zhang, J. Imag. Sci. Tech., 39, 106 (1995).

    Google Scholar 

  33. J. Schwitzgebel, J.G. Ekerdt, H. Gerischer, and A. Heller, J. Phys. Chem., 99, 5633 (1995).

    Google Scholar 

  34. D.W. Bahnemann, Israel J. Chem., 33, 115 (1993).

    Google Scholar 

  35. M. Sadeghi, W. Liu, T.-G. Zhang, P. Stavropoulos, and B. Levy, Journal of Physical Chemistry, 100, 19466 (1996).

    Google Scholar 

  36. B. Levy, Photogr. Sci. Eng., 15, 279 (1971).

    Google Scholar 

  37. H. Gerisher, ``Conditions for an efficient photocatalytic activity of TiO2 particles'', in Photocatalytic Purification and Treatment of Water and Air, eds. D.F. Ollis and H. Al-Ekabi (Elsevier Science Publishers B. V., 1, 1993).

  38. N.N. Lichtin and M. Avudaithai, Res. Chem. Intermed., 20, 755 (1994).

    Google Scholar 

  39. G.B. Raupp and L.A. Dibble, ``Solid Photocatalytic Oxidation of Environmental Pollutants,'' U.S. Patent No. 5,045,288, Sept. 15 (1991).

  40. N.N. Lichtin, J. Dong, and K.M. Vijayakumar, Water Poll Res. J. Canada, 27, 203 (1992).

    Google Scholar 

  41. C.R. Berry, Phys. Rev., 153, 989 (1967).

    Google Scholar 

  42. B. Levy, W. Liu, and E.S. Gilbert, J. Phys. Chem., 101, 1810 (1997).

    Google Scholar 

  43. W. West, ``The Spectral Sensitivity of Emulsions, Spectral Sensitization, Desensitization and Other Photographic Effects of Dyes'', in Neblette's Handbook of Photography and Reprography, 7th edition, ed. J.M. Sturge (Van Nostrand Reinhold Co., p. 87, 1977).

  44. B. Levy and N. Mattucci, Photgr. Sci. Eng., 14, 308 (1970).

    Google Scholar 

  45. K. Norland, A. Ames, and T. Taylor, Photogr. Sci. Eng., 14, 295 (1970).

    Google Scholar 

  46. T.-G. Zhang and B. Levy, ``Modulation of photocharge polarity by light intensity in optically formed oriented AgX/Ag heterojunction arrays'', Bulgarian Chemical Communications, 26(3/4), 412 (1993).

    Google Scholar 

  47. H.W. Vogel, (1874) letter written to The Philadelphia Photographer, 11, p. 25; reprinted Photogr. Sci. Engr., 18, p. 33 (1974).

    Google Scholar 

  48. M.P. Lippmann, ``La photographie des couleurs,'' Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, 112, p. 274. (see also Bjelkhagen, H.I. (1995) ``Silver-Halide Recording Materials for Holography and Their Processing,'' Springer, Berlin, pp. 4–5, 14) (1891).

  49. B. Levy, Photogr. Sci. Eng., 27, 204 (1983).

    Google Scholar 

  50. J. Maskasky, Photogr. Sci. Engr., 25, 96 (1981).

    Google Scholar 

  51. T. Sugimoto and K. Miyake, J. Coll. and Interface Sci., 140, 348 (1990).

    Google Scholar 

  52. T. Takizawa, T. Watanabe, and K. Honda, J. Phys. Chem., 82, 1391 (1978).

    Google Scholar 

  53. ibid., 84, 51 (1980).

    Google Scholar 

  54. T. Watanabe, T. Takizawa, and K. Honda, Ber. Bunsenges. Phys. Chem., 85, 430 (1981).

    Google Scholar 

  55. P.V. Kamat and N.M. Dimitrijevic, Sol. Energy, 44, 83 (1990).

    Google Scholar 

  56. T. Sakata, ``Heterogeneous Photocatalysis at Liquid-Solid Interfaces'', in Photocatalysis: Fundamentals and Applications, eds. N. Serpone and E. Pelizzetti (Wiley, New York 311, 1989).

    Google Scholar 

  57. N. Serpone, P. Pichat, J.M. Herrmann, and E. Pelizzetti, ``Inter-Particle Electron Transfer in Semiconductor Dispersions: A New Strategy in Photocatalysis'', in Supramolecular Photochemistry, ed., V. Balzani, Reidel Publishing Co. p. 415 (1987).

  58. A. Sobcyznski, A.J. Bard, A. Champion, M.A. Fox, T. Mallouk, S.E. Webber, and J.M. White, J. Phys. Chem., 91, 3316 (1987).

    Google Scholar 

  59. V.N. Parmon and K.I. Zamaraev, ``Catalysis in Conversion and Storage of Solar Energy: Photocatalysis Versus Thermocatalysis. Advances and Unsolved Problems'', in Photochemical Energy Conversion-Proceedings of the Seventh International Conference on Photochemical Conversion and Storage of Solar Energy, July 31–August 5, 1988, eds. J.R. Norris and D. Meisel, Elsevier, NY, 1989, p. 330, (1988).

  60. V.N. Parmon and K.I. Zamaraev, ``Homogeneous and Heterogeneous Catalytic Systems for Conversion and Storage of Solar Energy'', Proceedings of the Eighth International Conference on Photochemical Conversion and Storage of Solar Energy, July 15–20, 1990, eds., E. Pelizzetti and M. Schiavello, Kluwer Acad. Publ., Dordrect, 1991, p. 412, (1990).

    Google Scholar 

  61. H. Gerisher and M. Lubke, J. Electroanal. Chem., 204, 225 (1986).

    Google Scholar 

  62. L. Spanhel, H. Weller, and A. Henglein, J. Am. Chem. Soc., 109, 6632 (1987).

    Google Scholar 

  63. A. Henglein, M. Gutierrez, H. Weller, A. Fojtik, and A. Jirkovsky, Ber. Bunsenges. Phys. Chem., 93, 593 (1989).

    Google Scholar 

  64. H.S. Zhou, I. Honma, H. Komiyama, and J.W. Haus, J. Phys.Chem., 97, 895 (1993).

    Google Scholar 

  65. E.P. Davey and E.B. Knott, ``Photographic AgBr Emulsion Containing Some AgI,'' U.S. Pat. 2,592,250, April 8 (1952).

  66. B. Zuckerman, Photogr. Sci. Eng., 20, 111 (1976).

    Google Scholar 

  67. A. Mews, A. Eychmuller, M. Giersig, D. Schoss, and H. Weller, J. Phys. Chem., 98, 934 (1994).

    Google Scholar 

  68. D. Fitzmaurice, H. Frei, and J. Rabani, J. Phys. Chem., 99, 9176 (1995).

    Google Scholar 

  69. J. Rabani, J. Phys. Chem., 93, 7707 (1989).

    Google Scholar 

  70. P.K. Gopidas, M. Bohorquez, and P.V. Kamat, J. Phys. Chem., 94, 6435 (1990).

    Google Scholar 

  71. I. Bedja and P.V. Kamat, J. Phys. Chem., 99, 9182 (1995).

    Google Scholar 

  72. P. Lawless, S. Kapor, and D. Meisel, J. Phys. Chem., 99[25], 10329 (1995).

    Google Scholar 

  73. H. Kobayashi, F. Mizuno, Y. Nakato, and H. Tsubomura, J. Phys. Chem., 95, 819 (1991).

    Google Scholar 

  74. W. Choi, A. Termin, and M.R. Hoffmann, J. Phys. Chem., 98, 13669 (1994).

    Google Scholar 

  75. S.T. Martin, C.L. Morrison, and M.R. Hoffmann, J. Phys. Chem., 98, 13695 (1994).

    Google Scholar 

  76. L.M. Kellogg, Photogr. Sci. Eng., 18, 378 (1974).

    Google Scholar 

  77. M.A. Anderson, S. Yamazaki-Nishida, and S. Cervera-Marrch, in Photocatalytic Purification and Treatment of Water and Air, ed. D. Ollis and D.F. Al-Ekabi, Elsevier Science Publishers, New York (1993).

    Google Scholar 

  78. B. O'Regan and M. Grätzel, Nature, 353, 737 (1991).

    Google Scholar 

  79. E. Pelizzetti, C. Minero, E. Borgarello, L. Tinucci, and N. Serpone, Langmuir, 9, 2995 (1993).

    Google Scholar 

  80. N.N. Lichtin and M. Avudiathia, private communication (1994).

  81. A. Yasumori, K. Yamazaki, S. Shibata, and M. Yamane, J. Ceramic Soc. Japan, 102, 702 (1994).

    Google Scholar 

  82. C. Anderson and A.J. Bard, J. Phys. Chem., 99, 9882 (1995).

    Google Scholar 

  83. C. Bonner, S. Diol, C.A. Schuttenmaer, J. Cao, Y.L. Gao, and R.J.D. Miller, Sol. Energ. Mat. Sol. Cells, 38, 331 (1995).

    Google Scholar 

  84. N.S. Lewis, Sol. Energ. Mat. Sol. Cells, 38, 323 (1995).

    Google Scholar 

  85. J-E. Moser, Sol. Energ. Mat. Sol. Cells, 38, 343 (1995).

    Google Scholar 

  86. H. Tributsch and F. Willig, Sol. Energ. Mat. Sol. Cells, 38, 355 (1995).

    Google Scholar 

  87. A. Hagfeldt, N. Vlachopoulos, and M. Grätzel, J. Electrochem. Soc., in press.

  88. H.M. Lin, C.M. Hsu, H.Y. Yang, P.Y. Leeb, and C.C. Yang, Sensors and Actuators B-Chemical, 22, 63 (1994).

    Google Scholar 

  89. G. Smestad, ``The Grätzel Cell: A Solar Cell Based on Photosynthesis and Photography,'' The Spectrum, published by Bowling Green University, Bowling Green, Ohio, 7 (2), p. 16 (1994).

    Google Scholar 

  90. P. Hoyer, R. Eichberger, and H. Weller, Ber. Bunsenges. Phys. Chem., 97, 630 (and refs. therein) (1993).

    Google Scholar 

  91. L. Kavan, T. Stoto, M. Grätzel, D. Fitzmaurice, and V. Shklover, J. Phys. Chem., 97, 9493 (1993).

    Google Scholar 

  92. B. Levy, W. Liu, and E.S. Gilbert, ``Directed Photocurrents in Nanostructured SnO2/TiO2/Ru(II)L2(CNS)2 Hetero-junctions'', in Fine Particles Science and Technology from Micro to Nanoparticles, Proceedings of NATO Advanced Research Workshop, Acquafredda di Maratea, Italy, July 15-21, 1955, ed. Ezio Pelizzetti, Kluwer Academic Publishers, pp. 343–370.

  93. S. Gilbert, unpublished results (1994).

  94. K. Schwarzburg and F. Willig, Applied Phys. Lett., 58, 2520 (1991).

    Google Scholar 

  95. R. Könenkamp, R. Henninger, and P. Hoyer, J. Phys. Chem., 97, 7328–7330 (1993).

    Google Scholar 

  96. R. Könenkamp and R. Henninger, Applied Physics, A58, 87 (1994).

    Google Scholar 

  97. A. Hagfeldt, U. Bjorksten, and S.E. Lindquist, Sol. Energy Mat., Sol. Cells, 27, 293 (1992).

    Google Scholar 

  98. S. Sodergren, A. Hagfeldt, J. Olsson, and S.-E. Lindquist, J. Phys. Chem., 98, 5552 (1994).

    Google Scholar 

  99. R. Amadelli, R. Argazzi, A. Bibnozzi and F. Scandola, J. Am. Chem. Soc., 112, 7099 (1990).

    Google Scholar 

  100. R. Bube, Photoelectronic Properties of Semiconductors, Cambridge University Press, Cambridge, Great Britain, Ch. 12, pp. 280–305 (1992).

    Google Scholar 

  101. M. Sadeghi, private communication (1995).

  102. S. Gilbert, private communication (1995).

  103. R. Vogel, P. Hoyer, and H. Weller, J. Chem. Phys., 98, 3183 (1994).

    Google Scholar 

  104. S.M. Baxter, W.E. Jones, E. Danielson, L. Worl, G. Strouse, J. Younathan, and T.J. Meyer, Coordination Chemistry Reviews, 111, 47 (1991).

    Google Scholar 

  105. S. Serroni, G. Denti, S. Campagna, A. Juris, and V. Balzani, Angew. Chem. Int. Ed. Engl., 31(10), 1493 (1992).

    Google Scholar 

  106. D.M. Antonelli and J.Y. Ying, Angew. Chem. Int. Ed. Engl., 34, 18, 2014 (1995).

    Google Scholar 

  107. H.-P. Sauvage, J.-C. Collin, J.-C. Chambron, S. Guillerez, and C. Coudret, Chem. Rev., 94, 993 (1994).

    Google Scholar 

  108. V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, and M. Venturi, Coordination Chemistry Reviews, 132, 1 (1994).

    Google Scholar 

  109. V. Balzani, Proc. 19th DOE Solar Photochem. Res. Conf., 1 (1995).

  110. D.P. Rillema, Proc. 19th DOE Solar Photochem. Res. Conf., p. 3 (1995).

  111. G. Jones, C. Oh, and G.L. Indig, ``Organic Dyes Bound to Polyelectrolytes: Photophysical Probes of Binding Domains and Biopolymer Conformation,'' in Aquatic and Surface Photochemistry, eds. G.R. Helz, R.G. Zepp, and D.G. Crosby (Lewis Publishers, Boca Raton, p. 129, 1994).

    Google Scholar 

  112. D. Gust, T.A. Moore, and A.L. Moore, Accounts of Chemical Research, 26, p. 198 (1993).

    Google Scholar 

  113. D. Gust, T.A. Moore, and A.L. Moore, IEEE Engineering in Medicine and Biology, Feb./Mar., 58 (1994).

  114. J.J. Hopfield, J.N. Onuchic, and D.N. Bertan, J. Phys. Chem., 93, 6350 (1989).

    Google Scholar 

  115. R. Ballardini, V. Balzani, M.T. Gandolfi, L. Prodi, M. Venturi, D. Philp, H.G. Ricketts, and J.F. Stoddari, Angew. Chem. Int. Ed. Engl., 32, 1301 (1993).

    Google Scholar 

  116. P.L. Anelli, P.R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M.T. Gandolfi, T.T. Goodnow, A.E. Kaifer, D. Philip, M. Pietraszkiewicz, L. Prodi, M.V. Reddington, A.M.Z. Slawin, N. Spencer, J.F. Stoddart, C. Vicent, and D.J. Williams, J. Am. Chem. Soc., 114, 193 (1992).

    Google Scholar 

  117. J.S. Krueger, J.E. Mayer, and T.E. Mallouk, J. Am. Chem. Soc., 110, 8232 (1988).

    Google Scholar 

  118. M.B. Ledney and P.K. Dutta, ``Strategies for Efficient Production and Access to Photochemically Generated Redox Species in Zeolites,'' in Tenth Int. Conf. on PhotoChemical Conversion and Storage of Solar Energy (IPS-10), ed. G. Calzaferri, Interlaken, Switzerland, p. 21 (1994).

    Google Scholar 

  119. F. Binder, G. Calzaferri, and N. Gfeller, Solar Energy Materials and Solar Cells, 38, 175 (1995).

    Google Scholar 

  120. G. Calzaferri, A. Kunzmann, and J. Li, ``Photophysical and Photoelectrochemical Properties of Ru(byp)3 2+ Encapsulated in Zeolite Y,'' in Tenth Int. Conf. on PhotoChemical Conversion and Storage of Solar Energy (IPS-10), edited by G. Calzaferri, Interlaken, Switzerland, p. 455 (1994).

    Google Scholar 

  121. S. Feng and T. Bein, Nature, 386, 834 (1994).

    Google Scholar 

  122. R. Beer, G. Calzaferri, J. Li, and B. Waldeck, Coordination Chemistry Reviews, 111, 193 (1991).

    Google Scholar 

  123. Tenth Int. Conf. on PhotoChemical Conversion and Storage of Solar Energy (IPS-10), ed. G. Calzaferri, Interlaken, Switzerland (1994).

    Google Scholar 

  124. H. Frei, Proc. 19th DOE Solar Photochem. Res. Conf., 18 (1995).

  125. T.E. Mallouk, S.W. Keller, G.B. Saupe, and S.A. Johnson, Proc. 19th DOE Solar Photochem. Res. Conf., 21 (1995).

  126. C.S. Dulcey, J.H. Georger, Jr., V. Krauthamer, D.A. Stenger, T.L. Fare, and J.M. Calvert, Science, 252, 551 (1991).

    Google Scholar 

  127. M. Pomerantz, A. Segmuller, L. Netzer, and J. Savig, J. Thin Solid Films, 132, 153 (1985).

    Google Scholar 

  128. S.R. Wasserman, Y.-T. Tao, and G.M. Whitesides, Langmuir, 5, 1074 (1989).

    Google Scholar 

  129. N. Tillman, A. Ullman, and T.L. Penner, Langmuir, 5, 101 (1989).

    Google Scholar 

  130. D.-Q. Li, M.A. Ratner, and T.J. Marks, J. Am. Chem. Soc., 112, 7389 (1990).

    Google Scholar 

  131. C.S. Christ, J. Yu, X. Zhao, G.T.R. Palmore, and M. Wrighton, Inorg. Chem., 31, 4439 (1992).

    Google Scholar 

  132. M.K. DeArmond, private communication, October 12, 1995.

  133. D.K. Smith, G.A. Lane, and M.S. Wrighton, J. Phys. Chem., 92, 2616 (1988).

    Google Scholar 

  134. X. Marguerettaz, S.N. Rao, R. Redmond, and D. Fitzmaurice, ``Heterosupramolecular Chemistry: Long-lived light-induced charge separation by vectorial electron flow in a heterotriad,'' in Optical materials Technology for Energy Efficiency and Solar Energy Conversion XIII SPIE Proceedings, Vol. 2255, p. 793 (1994).

    Google Scholar 

  135. N.A. Kotov, I. Dékány, and J.H. Fendler, J. Phys. Chem., 99, 13065 (1995).

    Google Scholar 

  136. H. Sakaguchi, T. Nakamura, T. Nagamura, T. Ogawa, and T. Matsuo, Chem. Letters, 1715 (1989).

  137. H. Sakaguchi, T. Nagamura, and T. Matsuo, Applied Organometallic Chemistry, 5, 257 (1991).

    Google Scholar 

  138. S. Yamada, T. Nakano, and T. Matsuo, Thin Solid Films, 245, 196 (1994).

    Google Scholar 

  139. Y. Kunugi, Y. Harima, and K. Yamashita, J. Chem. Soc. Chemical Communications, no. 7, April, 787 (1995).

    Google Scholar 

  140. R. Bilewicz and M. Majda, Langmuir, 7, 2794 (1991).

    Google Scholar 

  141. T. Richardson, G.G. Roberts, S. Holder, and D. Lacy, Thin Solid Films, 210/211, 299 (1992).

    Google Scholar 

  142. K. Yase, S. Schwiegk, G. Lieser, and G. Wegner, Thin Solid Films, 130, 213 (1992).

    Google Scholar 

  143. H. Samha and M.K. DeArmond, Langmuir, 9, 1927 (1993).

    Google Scholar 

  144. V. Heleg and I. Willner, J. Chem. Soc., Chem. Commun., p. 2113 (1994)

  145. J.G. Sczechowski, C.A. Koval, and R.D. Noble, ``Improved photoefficiencies for TiO2 photocatalytic reactors through the use of controlled periodic illumination'', in Photocatalytic Purification and Treatment of Water and Air, eds. D.F. Ollis and H. Al-Ekabi, Elsevier, Amsterdam, (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, B. Photochemistry of Nanostructured Materials for Energy Applications. Journal of Electroceramics 1, 239–272 (1997). https://doi.org/10.1023/A:1009983710819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009983710819

Navigation