Skip to main content
Log in

G Proteins in Heart Disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heterotrimeric G proteins are the signal transducers for seven transmembrane spanning receptors, enabling receptor activation of individual downstream signaling pathways. Modified expression or activity of G proteins and their downstream effectors is postulated to play a role in cardiac hypertrophy and heart failure. This paper reviews the evidence for and against a pathologic role for G proteins in cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science 1991;252:802–808.

    Google Scholar 

  2. Neumann J, Schmitz W, Scholz H, von Meyerinck L, Doring V, Kalmar P. Increase in myocardial Gi-proteins in heart failure. Lancet 1988;2:936–937.

    Google Scholar 

  3. Hershberger RE, Feldman AM, Bristow MR. A1-adenosine receptor inhibition of adenylate cyclase in failing and nonfailing human ventricular myocardium. Circulation 1991;83: 1343–1351.

    Google Scholar 

  4. Marzo KP, Frey MJ, Wilson JR, et al. Beta-adrenergic receptor-G protein-adenylate cyclase complex in experimental canine congestive heart failure produced by rapid ventricular pacing. Circ Res 1991;69:1546–1556.

    Google Scholar 

  5. Böhm M, Gierschik P, Knorr A, Larisch K, Weismann K, Erdmann E. Desensitization of adenylate cyclase and in-crease of Gi alpha in cardiac hypertrophy due to acquired hypertension. Hypertension 1992;20:103–112.

    Google Scholar 

  6. Böhm M, Gierschik P, Knorr A, Larisch K, Weismann K, Erdmann E. Role of altered G-protein expression in the regulation of myocardial adenylate cyclase activity and force of contraction in spontaneous hypertensive cardiomyopathy in rats. J Hypertens 1992;10:1115–1128.

    Google Scholar 

  7. Kawamoto H, Ohyanagi M, Nakamura K, Yamamoto J, Iwasaki T. Increased levels of inhibitory G protein in myocardium with heart failure. Jpn Circ J 1994;58:913–924.

    Google Scholar 

  8. Böhm M, Kirchmayr R, Erdmann E. Myocardial Gi alphaprotein levels in patients with hypertensive cardiac hypertrophy, ischemic heart disease and cardiogenic shock. Cardiovasc Res 1995;30:611–618.

    Google Scholar 

  9. Vatner DE, Sato N, Galper JB, Vatner SF. Physiological and biochemical evidence for coordinate increases in muscarinic receptors and Gi during pacing-induced heart failure. Circulation 1996;94:102–107.

    Google Scholar 

  10. Feldman AM, Cates AE, Bristow MR, Van Dop C. Altered expression of alpha-subunits of G proteins in failing human hearts. J Mol Cell Cardiol 1989;21:359–365.

    Google Scholar 

  11. Feldman AM, Ray PE, Bristow MR. Expression of alphasubunits of G proteins in failing human heart: A reappraisal utilizing quantitative polymerase chain reaction. J Mol Cell Cardiol 1991;23:1355–1358.

    Google Scholar 

  12. Eschenhagen T, Mende U, Nose M, et al. Increased messenger RNA level of the inhibitory G protein alpha subunit Gi alpha-2 in human end-stage heart failure. Circ Res 1992;70: 688–696.

    Google Scholar 

  13. Eschenhagen T, Friedrichsen M, Gsell S, et al. Regulation of the human Gi alpha-2 gene promoter activity in embryonic chicken cardiomyocytes. Basic Res Cardiol 1996;91:41–46.

    Google Scholar 

  14. Waagstein F, Bristow MR, Swedberg K, et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in dilated cardiomyopathy (MDC) trial study group. Lancet 1993;342:1441–1446.

    Google Scholar 

  15. Sigmund M, Jakob H, Becker H, et al. Effects of metoprolol on myocardial beta-adrenoceptors and Gi alpha-proteins in patients with congestive heart failure. Eur J Clin Pharmacol 1996;51:127–132.

    Google Scholar 

  16. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE investigators. N Engl J Med 1992;327:669–677.

    Google Scholar 

  17. Jakob H, Sigmund M, Eschenhagen T, et al. Effect of captopril on myocardial beta-adrenoceptor density and Gi alphaproteins in patients with mild to moderate heart failure due to dilated cardiomyopathy. Eur J Clin Pharmacol 1995;47: 389–394.

    Google Scholar 

  18. Redfern CH, Coward P, Degtyarev MY, et al. Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nat Biotechnol 1999;17: 165–169.

    Google Scholar 

  19. Chen LA, Vatner DE, Vatner SF, Hittinger L, Homcy CJ. Decreased Gs alpha mRNA levels accompany the fall in Gs and adenylyl cyclase activities in compensated left ventricular hypertrophy. In heart failure, only the impairment in adenylyl cyclase activation progresses. J Clin Invest 1991; 87:293–298.

    Google Scholar 

  20. Longabaugh JP, Vatner DE, Vatner SF, Homcy CJ. Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure. J Clin Invest 1988;81:420–424.

    Google Scholar 

  21. Sethi R, Elimban V, Chapman D, Dixon IM, Dhalla NS. Differential alterations in left and right ventricular G-proteins in congestive heart failure due to myocardial infarction. J Mol Cell Cardiol 1998;30:2153–2163.

    Google Scholar 

  22. Roth DA, Urasawa K, Helmer GA, Hammond HK. Downregulation of cardiac guanosine 59-triphosphate-binding proteins in right atrium and left ventricle in pacing-induced congestive heart failure. J Clin Invest 1993;91:939–949.

    Google Scholar 

  23. Bohm M, Gierschik P, Knorr A, Schmidt U, Weismann K, Erdmann E. Cardiac adenylyl cyclase beta-adrenergic receptors, and G proteins in salt-sensitive hypertension. Hypertension 1993;22:715–727.

    Google Scholar 

  24. Brodde OE, Vogelsang M, Broede A, et al. Diminished responsiveness of Gs-coupled receptors in severely failing human hearts: No difference in dilated versus ischemic cardiomyopathy. J Cardiovasc Pharmacol 1998;4:585–594.

    Google Scholar 

  25. Sethi R, Bector N, Takeda N, Nagano M, Jasmin G, Dhalla NS. Alterations in G-proteins in congestive heart failure in cardiomyopathic (UM-X7.1) hamsters. Mol Cell Biochem 1994;140:163–170.

    Google Scholar 

  26. Gaudin C, Ishikawa Y, Wight DC, et al. Overexpression of Gs alpha protein in the hearts of transgenic mice. J Clin Invest 1995;95:1676–1683.

    Google Scholar 

  27. Iwase M, Bishop SP, Uechi M, et al. Adverse effects of chronic endogenous sympathetic drive induced by cardiac Gs? overexpression. Circ Res 1996;78:517–524.

    Google Scholar 

  28. Geng YJ, Ishikawa Y, Vatner DE, et al. Apoptosis of cardiac myocytes in Gsa transgenic mice. Circ Res 1999;84:34–42.

    Google Scholar 

  29. Behrana AJ, Hasleton P, Leen CLS, Ashleigh RS, Gholkar A. Multiple extra-adrenal paragangliomas associated with catecholamine cardiomyopathy. Eur Heart J 1989;10: 182–185.

    Google Scholar 

  30. Imperato-McGinley J, Gautier T, Ehlers K, Zullo MA, Goldstein DS, Vaughan ED Jr. Reversibility of catecholamine-induced dilated cardiomyopathy in a child with a pheochromocytoma. N Engl J Med 1987;316:793–797.

    Google Scholar 

  31. Van Vliet PD, Burchell HB, Titus JL. Focal myocarditis associated with pheochromocytoma. N Engl J Med 1966; 274:1102–1108.

    Google Scholar 

  32. Sardesai SH, Mourant AJ, Sivathandon Y, Farrow R, Gibbons DO. Phaeochromocytoma and catecholamine induced cardiomyopathy presenting as heart failure. Br Heart J 1990;63:234–237.

    Google Scholar 

  33. Liggett SB, Tepe NM, Lorenz JN, et al. Early and delayed consequences of b2 adrenergic receptor overexpression in mouse hearts: Critical role for expression level. Circulation 2000: in press.

  34. Dorn GW, II, Tepe NM, Lorenz JN, et al. Low-and high-level transgenic expression of b2-adrenergic receptors differentially affects cardiac hypertrophy and function in Gaq overexpressing mice. Proc Natl Acad Sci USA 1999;96: 6400–6405.

    Google Scholar 

  35. Gao MH, Lai NC, Roth DM, et al. Adenylycyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation 1999;99:1618–1622.

    Google Scholar 

  36. Rockman HA, Chien KR, Choi DJ, et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci USA 1998;95:7000–7005.

    Google Scholar 

  37. Kock WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing the b-adrenergic receptor kinase or a ARK inhibitor. Science 1995;268:1350–1353.

    Google Scholar 

  38. Milano CA, Allen LF, Rockman HA, et al. Enhanced myocardial function in transgenic mice overexpressing the ? 2-adrenergic receptor. Science 1994;264:582–586.

    Google Scholar 

  39. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells in an alpha1 adrenergic response. J Clin Invest 1983;72:732–738.

    Google Scholar 

  40. Adams JW, Migita DS, Yu MK, et al. Prostaglandin F2a stimulates hypertrophic growth of cultured neonatal rat ventricular myocytes. J Biol Chem 1996;271:1179–1186.

    Google Scholar 

  41. Knowlton KU, Michel MC, Itani M, et al. The a1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem 1993;268:15374–15380.

    Google Scholar 

  42. Sadoshima J-I, Xu Y, Slayer HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977–984.

    Google Scholar 

  43. Shubeita HE, McDonough PM, Harris AN, et al. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990;265:20555–20562.

    Google Scholar 

  44. Bowling N, Walsh RA, Song G, et al. Increased protein kinase C activity and expression of Ca21-sensitive isoforms in the failing human heart. Circulation 1999;99:384–391.

    Google Scholar 

  45. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991;325:293–302.

  46. Dunn FG, Oigman W, Ventura HO, Messeri FH, Kobrin I, Frohlich ED. Enalapril improves systemic and renal hemodynamics and allows regression of left ventricular mass in essential hypertension. Am J Cardiol 1984;53: 105–108.

    Google Scholar 

  47. Garavaglia GE, Messeri FH, Nunez BD, Schmieder RE, Frohlich ED. Immediate and short-term cardiovascular effects of a new converting enzyme inhibitor (Lisinopril) in essential hypertension. Am J Cardiol 1988;62:912–916.

    Google Scholar 

  48. Nakashima Y, Fouad FM, Tarazi RC. Regression of left ventricular hypertrophy from systemic hypertension by enalapril. Am J Cardiol 1984;53:1044–1049.

    Google Scholar 

  49. Ju H, Zhao S, Tappia PS, Panagia V, Dixon IMC. Expression of Gqa and PLC-b in scar and border tissue in heart failure due to myocardial infarction. Circulation 1998;97:892–899.

    Google Scholar 

  50. Milano CA, Dolber PC, Rockman HA, et al. Myocardial expression of a constitutively active a1b-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 1994;91:10109–10113.

    Google Scholar 

  51. Akhter SA, Milano CA, Shotwell KF, et al. Transgenic mice with cardiac overexpression of a1B-adrenergic receptors. J Biol Chem 1997;272:21253–21259.

    Google Scholar 

  52. D'Angelo DD, Sakata Y, Lorenz JN, et al. Transgenic Gaq overexpression induces cardiac contractile function in mice. Proc Natl Acad Sci USA 1997;94:8121–8126.

    Google Scholar 

  53. Adams JW, Sakata Y, Davis MG, et al. Enhanced Gaq signaling: A common pathway mediates cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 1998;95:10140–10145.

    Google Scholar 

  54. Dorn GW, II, Robbins J, Ball N, Walsh RA. Myosin heavy chain regulation and myocyte contractile depression after left ventricular hypertrophy in aortic banded mice. Am J Physiol 1994;267:H400-H405.

    Google Scholar 

  55. Sakata Y, Lorenz JN, Hoit BD, Liggett SB, Walsh RA, Dorn GW II. Decompensation of pressure overload hypertrophy in Gaq overexpressing mice. Circulation 1998;97:1488–1495.

    Google Scholar 

  56. Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ. Transient cardiac expression of constitutively active Gaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 1998;95:13893–13898.

    Google Scholar 

  57. Offermanns S, Hashimoto K, Watanabe M, et al. Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar purkinje cells in mice lacking Gaq. Proc Natl Acad Sci USA 1997;94:14089–14094.

    Google Scholar 

  58. Offermanns S, Toombs CF, Hu Y-H, Simon MI. Defective platelet activation in Gaq deficient mice. Nature 1997;389: 183–186.

    Google Scholar 

  59. Offermanns S, Zhao L-P, Gohla A, Sarosi I, Simon MI, Wilkie TM. Embryonic cardiomyocyte hypoplasia and craniofacial defects in G?q/G?11 mutant mice. EMBO 1998;17:4304–4312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorn, G.W. G Proteins in Heart Disease. Heart Fail Rev 4, 303–310 (1999). https://doi.org/10.1023/A:1009895301426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009895301426

Navigation