Skip to main content
Log in

The Lymphatic Drainage of the Gut and the Pathogenesis of SIRS and MODS

  • Published:
Sepsis

Abstract

The data accumulated so far from experimental animals, clinical observations, and clinical trials of gut-oriented interventions are considered by many acceptably good evidence for the role of the gut in septic states. In fact, the hypothesis that the systemic inflammatory response syndrome (SIRS) and associated organ dysfunctions are initiated, perpetuated, and/or exacerbated by microbiological and immunological phenomena that occur at the gut level has attracted the effort of many investigators over the last two decades. The changes of the gut microbial flora, bacterial translocation, and the functional and morphological abnormalities of the intestinal mucosa and the gut-associated lymphatic tissue (GALT) that occur in experimental as well as human septic states have been made responsible for the clinical syndromes of SIRS and multiple organ dysfunction syndrome (MODS). The potential pathways of an inflammatory signal from the gut to the systemic circulation and distant organ systems are the portal vein and the lymphatic drainage of the gut via the mesenteric lymph nodes and the thoracic duct. The present article reviews the current state of our knowledge of the lymphatic drainage of the gut that may provide the route of access to the systemic circulation for a gut-associated inflammatory signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deitch E. Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg 1992;216:117–134.

    Google Scholar 

  2. Heard SO, Fink MP. Multiple organ failure syndrome. Part I: epidemiology, prognosis, and pathophysiology. J Intensive Care Med 1991;6:279–294.

    Google Scholar 

  3. Baue AE. Multiple, progressive, or sequential systems failure: A syndrome for the 1970's. Arch Surg 1975;110:779–781

    Google Scholar 

  4. Polk HC, Shields CL. Remote organ failure: A valid sign of accult intra-abdominal infection. Surgery 1977;81:310–313.

    Google Scholar 

  5. Fry DE, Pearlstein L, Fulton RL, Polk HC Jr. Multiple system organ failure. The role of uncontrolled infection. Arch Surg 1980;115:136–144.

    Google Scholar 

  6. Meakins JL, Marshall JC. The gastrointestinal tract: The "motor" of multiple organ failure. Arch Surg 1986;121:197.

    Google Scholar 

  7. Marshall JC, Christou NV, Horn R, Meakins JL. The microbiology of multiple organ failure. The proximal gastrointestinal tract as an occult reservoir of pathogens. Arch Surg 1988;123:309–317.

    Google Scholar 

  8. Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract. The "undrained abscess" of multiple organ failure. Ann Surg 1993;218:111–119.

    Google Scholar 

  9. Marshall JC, Lee C, Meakins JL, Michel RP, Christou NV. Kupffer cell modulation of the systemic immune response. Arch Surg 1987;122:191–196.

    Google Scholar 

  10. Alexander JW, Boyce ST, Babcock GF, Gianotti L, Peck MD, Dunn DL, Pyles T, Childress CP, Ash SK. The process of microbial translocation. Ann Surg 1990;212:496–510.

    Google Scholar 

  11. Deitch EA, Specian RD, Berg RD. Endotoxin-induced translocation and mucosal permeability: Role of xanthine oxidase, complement activation, and macrophage products. Crit Care Med 1991;19:785–791.

    Google Scholar 

  12. Ayala A, Kisala JM, Felt JA, Perrin MM, Chaudry IH. Does endotoxin tolerance prevent the release of inflamatory monokines (interleukin 1, interleukin 6, or tumor necrosis factor) during sepsis? Arch Surg 1992;127:191–197.

    Google Scholar 

  13. Tokyay R, Zeigler StT, Loick HM, et al. Mesenteric lymphadenectomy prevents postburn systemic spread of translocated bacteria. Arch Surg 1992;127:384–388.

    Google Scholar 

  14. Koch T, Duncker HP, Axt R, Schiefer HG, Ackern KV, Neuhof H. Effects of hemorrhage, hypoxia, and intravascular coagulation on bacterial clearance and translocation. Crit Care Med 1993;21:1758–1764.

    Google Scholar 

  15. Nieuwenhuijzen GAP, Haskel Y, Lu Q, et al. Macrophage elimination increases bacterial translocation and gut-origin septicemia but attenuates symptoms and mortality rate in a model of systemic inflammation. Ann Surg 1993;218:791–799.

    Google Scholar 

  16. Gennari R, Alexander JW, Gianotti L, Eaves-Pyles T, Hartman S. Granulocyte macrophage colony-stimulating factor improves survival in two models of gut-derived sepsis by improving gut barrier function and modulating bacterial clearance. Ann Surg 1994;220:68–76.

    Google Scholar 

  17. Koike K, Moore EE, Moore FA, Read RA, Carl VS, Banerjee A. Gut ischemia/reperfusion produces lung injury independent of endotoxin. Crit Care Med 1994;22:1438–1444.

    Google Scholar 

  18. Shou J, Motyka LE, Daly JM. Intestinal microbial translocation: immunologic consequences and effects of interleukin-4. Surgery. 1994;116:868–876.

    Google Scholar 

  19. Tenenhaus M, Hansbrough JF, Zapata-Sirvent R, Neuman T. Treatment of burned mice with hyperbaric oxygen reduces mesenteric bacteria but not pulmonary neutrophil deposition. Arch Surg 1994;129:1338–1342.

    Google Scholar 

  20. Jiang J, Bahrami S, Leichtfried G, Redl H, Öhlinger W, Schlag G. Kinetics of endotoxin and tumor necrosis factor appearance in portal and systemic circulation after hemorrhagic shock in rats. Ann Surg 1995;221:100–106.

    Google Scholar 

  21. Helton WS, Rockwell M, Garcia RM, Maier RV, Heitkemper M. TPN-induced sympathetic activation is related to diet, bacterial translocation, and an intravenous line. Arch Surg 1995;130:209–214.

    Google Scholar 

  22. Gennari R, Alexander JW. Effects of hyperoxia on bacterial translocation and mortality during gut-derived sepsis. Arch Surg 1996;131:57–62.

    Google Scholar 

  23. Fryer JP, Kim S, Wells CL, et al. Bacterial translocation in a large-animal model of small-bowel transplantation. Portal vs systemic venous drainage and the effect of tacrolimus immunosuppression. Arch Surg 1996;131:77–84.

    Google Scholar 

  24. Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun 1979;23:403–411.

    Google Scholar 

  25. Moore FA, Moore EE, Poggetti R, et al. Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma. J Trauma 1991;31:629–638.

    Google Scholar 

  26. Brathwaite CEM, Ross SE, Nagele R, Mure AJ, O'Malley KF, Garcia Perez FA. Bacterial translocation occurs in humans after traumatic injury: Evidence using immunofluorescence. J Trauma 1993;34:586–590.

    Google Scholar 

  27. Van Goor H, Rosman C, Grond J, Kooi K, Wübbels GH, Bleichrodt RP. Translocation of bacteria and endotoxin in organ donors. Arch Surg 1994;129:1063–1066.

    Google Scholar 

  28. Brooks SG, May J, Sedman P, Tring I, Johnstone D, Mitchell CJ, MacFie J. Translocation of enteric bacteria in humans. Br J Surg 1993;80:901–902.

    Google Scholar 

  29. Ferri M, Gabriel S, Gavelli A, Franconeri P, Huguet C. Bacterial translocation during portal clamping for liver resection. A clinical study. Arch Surg 1997 Feb 2(2):162–5

    Google Scholar 

  30. Kale IT, Kuzu MA, Berkem H, Berkem R, Acar N. The presence of hemorrhagic shock increases the rate of bacterial translocation in blunt abdominal trauma. J Trauma 1998;44:171–174.

    Google Scholar 

  31. Peitzman AB, Udekwu AO, Ochoa J, Smith S. Bacterial translocation in trauma patients. J Trauma 1991;31:1083–1086.

    Google Scholar 

  32. Bion JF, Badger I, Crosby HA, et al. Selective decontamination of the digestive tract reduces Gram-negative pulmonary colonization but not systemic endotoxemia in patients undergoing elective liver transplantation. Crit Care Med 1994;22:40–49.

    Google Scholar 

  33. Johanson WG, Pierce AK, Sanford JP. Changing bacterial pharyngeal flora of hospitalized patients. Emergence of gram-negative bacilli. N Engl J Med 1969;281:1137–1140.

    Google Scholar 

  34. Sánchez García M, Cambronero Galache JA, López Diaz J, Cerdá Cerdá E, Rubio Blasco J, Gómez Aguinaga MA, NÚñez Reiz A, Rogero Marín S, Oñoro Cañaveral JJ, Sacristán del Castillo JA. Effectiveness and cost of selective decontamination of the digestive tract in critically ill intubated patients. A randomized, double-blind, placebo-controlled, multicenter trial. Am J Resp Crit Care Med 1998;158:908–916.

    Google Scholar 

  35. D'Amico R, Pifferi S, Leonetti C, Torri V, Tinazzi A, Liberati A. Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomised controlled trials. BMJ 1998;316:1275–1285.

    Google Scholar 

  36. Marshall JC, Christou NV, Meakins JL. Immunomodulation by altered gastrointestinal tract flora. The effects of orally administered, killed Staphylococcus epidermidis, Candida, and Pseudomonas on systemic immune responses. Arch Surg 1988;123:1465–1469.

    Google Scholar 

  37. Marshall JC, Christou NV, Meakins JL. Small-bowel bacterial overgrowth and systemic immunosuppression in experimental peritonitis. Surgery 1988;104:404–411.

    Google Scholar 

  38. Martínez-PellÚs AE, Merino P, Bru M, Conejero R, Seller G, Muñóz C, Fuentes T, González G, Álvarez B. Can selective digestive decontamination avoid the endotoxemia and cytokine activation promoted by cardiopulmonary bypass? Crit Care Med 1993;21:1684–1691.

    Google Scholar 

  39. Martínez-PellÚs AE, Merino P, Bru M, Cánovas J, Seller G, Sapina J, Fuentes T, Moro J. Endogenous endotoxemia of intestinal origin during cardiopulmonary bypass. Role of type of flow and protective effect of selective digestive decontamination. Intensive Care Med 1997;21:1684–1691.

    Google Scholar 

  40. Sorkine P, Szold O, Halpern P, Gutman M, Greemland M, Rudick V, Goldman G. Gut decontamination reduces bowel ischemia-induced lung injury in rats. Chest 1997;112:491–495.

    Google Scholar 

  41. Rosman C, Wubbels GH, Manson WL, Bleichrodt RP. Selective decontamination of the digestive tract prevents secondary infection of the abdominal cavity, and endotoxemia and mortality in sterile peritonitis in laboratory rats. Crit Care Med 1992; 20:1699–1704.

    Google Scholar 

  42. Yao YM, Lu LR, Yu Y, Liang HP, Chen JS, Shi ZG, Zhou BT, Sheng ZY. Influence of selective decontamination of the digestive tract no cell-mediated immune function and bacteria/ endotoxin translocation in thermally injured rats. J Trauma 1997;42:1073–1079.

    Google Scholar 

  43. Yao YM, Yu Y, Sheng ZY, Tian HM, Wang YP, Lu LR, Yu Y. Role of gut-derived endotoxemia and bacterial translocation rats after thermal injury: Effects of selective decontamination of the digestive tract. Burns 1995;21:580–585.

    Google Scholar 

  44. Arai M, Mochida S, Ohno A, Arai S, Fujiwara K. Selective bowel decontamination of recipients for prevention against liver injury following orthotopic liver transplantation: Evaluation with rat models. Hepatology 1998:27:123–127.

    Google Scholar 

  45. Spath G, Hirner A. Microbial translocation and impairment of mucosal immunity induced by an elemental diet in rats is prevented by selective decontamination of the digestive tract. Eur J Surg 1998;164:223–228.

    Google Scholar 

  46. Galban C, Celaya S, Marco P, Mesejo A, Montejo JC, Sánchez Segura JM. An immune-enhancing enteral diet reduces mortality and episodes of bacteremia in septic ICU patients. JPEN 1998;22:S13. Abstract.

    Google Scholar 

  47. Atkinson S, Sieffert E, Bihari D.A prospective, randomized, double-blind, controlled clinical trial of enteral immunonutrition in the critically ill. Crit Care Med 1999; 26:1164–1172.

    Google Scholar 

  48. Zaloga GP. Immune-enhancing enteral diets: Where's the beef? Crit Care Med 1999;26:1143–1146.

    Google Scholar 

  49. Kotani J, Usami M, Nomura H, Iso A, Kasahara H, Kuroda Y, Oyanagi H, Saitoh Y. Enteral nutrition prevents bacterial translocation but does not improve survival during acute pancreatitis. Arch Surg 1999;134:287–292.

    Google Scholar 

  50. Kalfarentzos F, Kehagias J, Mead N, Kokkinis K, Gogos CA. Enteral nutrition is superior to parenteral nutrition in severe acute pancreatitis: results of a randomized prospective trial. Br J Surg 1997;84:1665–1669.

    Google Scholar 

  51. Windsor AC, Kanwar S, Li AG, Barnes E, Guthrie JA, Spark JA, Welsh F, Guillou PJ, Reynolds JV. Compared with parenteral nutrition, enteral feeding attenuates the acute phase response and improves disease severity in acute pancreatitis. Gut 1998; 42:431–435.

    Google Scholar 

  52. Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 1993;103:565–575.

    Google Scholar 

  53. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 1993; 119:771–778.

    Google Scholar 

  54. Martin C, Saux P, Mege JL, Perrin G, Papazian L, Gouin F. Prognostic values of serum cytokines in septic shock. Intensive Care Med 1994;20:272–277.

    Google Scholar 

  55. Meduri GU, Headley S, Kohler G, et al. Persistent elevation of in_ammatory cytokines predicts a poor outcome in ARDS. Chest 1995;107:1062–107.

    Google Scholar 

  56. Shenkar R, Abraham E. Effects of hemorrhage on cytokine gene transcription. Lymphokine-Cytokine-Res 1993;12:237–247.

    Google Scholar 

  57. Mester M, Tompkins RG, Gelfand JA, Dinarello CA, Burke JF, Clark BD. Intestinal production of interleukin-1 alpha during endotoxemia in the mouse. J Surg Res 1993;54:584–591.

    Google Scholar 

  58. Meyer TA, Wang J, Tiao GM, Ogle CK, Fischer JE, Hasselgren PO. Sepsis and endotoxemia stimulate intestinal interleukin-6 production. Surgery 1995; 118:336–342.

    Google Scholar 

  59. Montravers P, Chollet-Martin S, Marmuse JP, Gourgerot-Pocidalo MA, Desmonts JM. Lymphatic release of cytokines during acute lung injury complicating severe pancreatitis. Am J Respir Crit Care Med. 1995;152:1527–1533.

    Google Scholar 

  60. Sánchez García M, Prieto A, Tejedor A, Martín-Duce A, Fernández Sánchez FJ, Granell J, Álvarez-Mon M. Characteristics of thoracic duct lymph in multiple organ dysfunction syndrome. Arch Surg 1997;132:13–18.

    Google Scholar 

  61. Abbas AK, Lichtman AH, Pober JS. Functional anatomy of immune responses. In: Abbas AK, Lichtman AH, Pober JS, eds. Cellular and Molecular Immunology, 3rd edition. Philadelphia: W.B. Saunders Company. 1997, chapt. 11, p. 231.

    Google Scholar 

  62. Anderson AO. Structure and Organization of the lymphatic system. In: Oppenheim JJ, Shevach EM, eds. Immunophysiology. The Role of Cells and Cytokines in Immunity and Inflammation 1990. New York London: Oxford University Press. 1990., chapt. 2, pp. 14–45.

    Google Scholar 

  63. Picker LJ and Siegelman MH. Lymphoid Tissues and Organs. In: Paul WE, ed. Fundamental Immunology, 4th ed. Boston: Lippincott, Williams and Wilkins 1998, chapt. 14.

    Google Scholar 

  64. Gowans JL. The effect of the continuous re-infusion of lymph and lymphocytes on the output of lymphocytes from the thoracic duct of unanaesthetized rats. Br J Exp Pathol 1957; 38:67–78.

    Google Scholar 

  65. Gowans JL, Knight EJ. The route of recirculation of lymphocytes in the rat. Proc R Soc London Biol 1964;159:257–282.

    Google Scholar 

  66. Vestweber D, Blanks JE. Mechanisms that regulate the function of the selectins and their ligands. Physiological Reviews1999;79:181–213.

    Google Scholar 

  67. Spertini O, Luscinskas FW, Kansas GS, Munro JM, Griffin JD, Gimbrone MA Jr, Tedder TF. Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J Immunol 1991;147:2565–2573.

    Google Scholar 

  68. Brady HR, Spertini O, Jimenez W, Brenner BM, Marsden PA, Tedder TF. Neutrophils, monocytes, and lymphocytes bind to cytokine-activated kidney glomerular endothelial cells through L-selectin (LAM-1) in vitro. J Immunol 1992; 149:2437–2444.

    Google Scholar 

  69. Wagner N, Löhler J, Kunkel EJ, Ley K, Leung E, Krissansen G, Rajewsky K, Müller W. Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature 1996;382:366–370.

    Google Scholar 

  70. Olofsson P. Evaluation of the effects of lymph drainage by a thoracic duct fistula in experimental peritonitis. Acta Chir Scand 1988;154:453–459.

    Google Scholar 

  71. Olofsson P, Nylander G, Olsson P. Endotoxin-transport routes and kinetics in intestinal ischemia. Acta Chir Scand 1985;151:635–639.

    Google Scholar 

  72. Lemaire LC, Van Wagensveld BA, Van Gulik TM, Dankert J, Van Lanschot JJ, Gouma GJ. Bacterial translocation to the thoracic duct in a setting of ischemia, partial resection and reperfusion of the porcine liver. Dig Surg 1999;16:222–228.

    Google Scholar 

  73. Magnotti LJ, Upperman JS, Xu DZ, Lu Q, Deitch EA. Gutderived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock. Ann Surg 1998;228:518–527.

    Google Scholar 

  74. Dugernier T, Reynaert MS, Deby-Dupont G, et al. Prospective evaluation of thoracic duct drainage in the treatment of respiratory failure complicating acute severe pancreatitis. Intensive Care Med. 1989;15:372–378.

    Google Scholar 

  75. Lemaire LC, van Deventer SJ, van Lanschot JJ, Meenan J, Gouma DJ. Phenotypical characterization of cells in the thoracic duct of patients with and without systemic inflammatory response syndrome and multiple organ failure. Scand J Immunol 1998;47:69–75.

    Google Scholar 

  76. Lemaire LCJM, Van Lanschot JJB, Van der Poll T, Buurman WA, Van Deventer SJH, Gouma DJ. Lymph of patients with a systemic inflammatory response syndrome inhibits lipopolysaccharide-induced cytokine production. JID 1998; 178:883–886.

    Google Scholar 

  77. Lemaire LCJM, Van Lanschot JJB, Stoutenbeek CP, Van Deventer SJH, Dankert J, Oosting H, Gouma DJ. Thoracic duct in patients with multiple organ failure: no major route of bacterial translocation. Ann Surg 1999;229:128–136.

    Google Scholar 

  78. Martín-Duce A, Sánchez García M, Tomas Barberá M, Granell Vicent J. Thoracic duct drainage. Eur J Surg. 1996;162:241–242.

    Google Scholar 

  79. Meduri GU, Headley S, Tolley E, et al. Plasma and BAL cytokine response to corticosteroid rescue treatment in late ARDS. Chest 1995;108:1315–1325.

    Google Scholar 

  80. Auphan NJA, Di Donato C, Rosette A, et al. Immuno-suppression by glucocorticoids inhibition of NF-KB activity through induction of IKB-a synthesis. Science 1995;270:286–290.

    Google Scholar 

  81. Wells CL, Maddaus MA, Simmons RL. Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis 1988;10:958–979.

    Google Scholar 

  82. Gautreaux MD, Deitch EA, Berg RD. T lymphocytes in host defense against bacterial translocation from the gastrointestinal tract. Infect Immun 1994; 62:2874–288.

    Google Scholar 

  83. Li J, Kudsk KA, Hamidian M, Gocinski BL. Bombesin affects mucosal immunity and gut-associated lymphoid tissue in intravenously fed mice. Arch Surg 1995; 130:1164–1170.

    Google Scholar 

  84. Toft P, Lillevang ST, Tonnesen E, Svendsen P, Hohndorf K. Redistribution of lymphocytes following E. coli sepsis. Scand J Immunol 1993;38:541–545.

    Google Scholar 

  85. Nathens AB, Rotstein OD, Dackiw AP, Marshall JC. Intestinal epithelial cells downregulate macrophage tumor necrosis factor-alpha secretion: A mechanism for immune homeostasis in the gut-associated lymphoid tissue. Surgery 1995;118:343–350.

    Google Scholar 

  86. Sanderson P, MacPherson GG, Jenkins CH, Calder PC. Dietary fish oil diminishes the antigen presentation activity of rat dendritic cells. J Leukoc Biol 1997;62:771–777.

    Google Scholar 

  87. Moore FA, Moore EE, Kudsk KA, Brown RO, Bower RH, Koruda MJ, Baker CC, Barbul A. Clinical benefits of an immune-enhancing diet for early postinjury enteral feeding. J Trauma 1994;37:607–615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, M.S. The Lymphatic Drainage of the Gut and the Pathogenesis of SIRS and MODS. Sepsis 3, 293–301 (1999). https://doi.org/10.1023/A:1009849326489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009849326489

Navigation