Skip to main content
Log in

Remodeling of Cardiac Membranes During the Development of Congestive Heart Failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Various proteins such as Ca2+channels, Ca2+-pump ATPase, Na+–Ca2+exchanger, and Na+-K+ATPase in the sarcolemmal (SL) membrane are considered to be intimately involved in Ca2+-influx and Ca2+-efflux processes in the cardiomyocyte. On the other hand, Ca2+-pump ATPase, Ca2+-release channels, Ca2+-regulatory protein (phospholamban), and Ca2+-binding protein (calsequestrin) in the sarcoplasmic reticulum (SR) are known to participate in raising and lowering the intracellular concentration of Ca2+for the occurrence of cardiac contraction and relaxation processes. Therefore, a defect in any of the SL and SR proteins can be seen to result in Ca2+-handling abnormalities in cardiomyocytes and subsequently in cardiac dysfunction during the development of heart failure. In this review, evidence is presented to show that changes in the expression of genes specific for cardiac membrane proteins may lead to remodeling of both SR and SL membranes during the development of heart failure. Although a great deal of work on changes in gene expression for the SR membrane proteins has been carried out in the failing heart, relatively little information regarding changes in gene expression for SL proteins has appeared in the literature. Prevention of remodeling of cardiac membranes by modification of changes in the gene expression is suggested to serve as an important target for the treatment of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman JD, Ferguson JJ, Safian RD, Gross-man W. Left ventricular remodeling after myocardial in-farction: a corollary to infarct expansion. Circulation 1986; 74:693–702.

    Google Scholar 

  2. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observation and clini-cal implications. Circulation 1990;81:1161–1172.

    Google Scholar 

  3. Katz AM. Effects of ischemia on the contractile processes of heart muscle. Am J Cardiol 1973;32:456–460.

    Google Scholar 

  4. Hutchins GM, Bulkley BH. Infarct expansion versus exten-sion: two different complications of acute myocardial in-farction. Am J Cardiol 1978;41:1127–1132.

    Google Scholar 

  5. Weisman HF, Bush DE, Mannisi JA, Weisfeldt ML, Healy B. Cellular mechanisms of myocardial infarct expansion. Circu-lation 1988;78:186–201.

    Google Scholar 

  6. Anversa P, Beghi C, Kikkawa Y, Olivetti G. Myocardial response to infarction in the rat. Morphometric measurement of infarct size and myocyte cellular hypertrophy. Am J Pathol 1985;118:484–492.

    Google Scholar 

  7. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E. Myocardial infarct size and ventricular function in rats. Circ Res 1979;44:503–512.

    Google Scholar 

  8. Sabbah HN, Goldstein S. Ventricular remodeling: conse-quences and therapy. Eur Heart J 1993;14 (Suppl C):24–29.

    Google Scholar 

  9. Ringer SA. A further contribution regarding the influence of different constituents of the blood on the contraction of the heart. J Physiol (Lond) 1883;4:29–42.

    Google Scholar 

  10. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE. Calcium movements in relation to heart function. Basic Res Cardiol 1982;77:117–139.

    Google Scholar 

  11. Carafoli E. Membrane transport of calcium: an overview. Methods Enzymol 1988;157:3–11.

    Google Scholar 

  12. Bers DM, Bassani JW, Bassani RA. Competition and redis-tribution among calcium transport system in rabbit cardiac myocytes. Cardiovasc Res 1993;27:1772–1777.

    Google Scholar 

  13. Negretti N, O'Neill SC, Eisner DA. The relative contribu-tions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc Res 1993;27:1826–1830.

    Google Scholar 

  14. Reuter H, Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composi-tion. J Physiol (Lond) 1968;195:451–470.

    Google Scholar 

  15. Reeves JP, Hale CC. The stoichiometry of the cardiac so-dium-calcium exchange system. J Biol Chem 1984;259: 7733–7739.

    Google Scholar 

  16. Philipson KD, Longoni S, Ward R. Purification of the cardiac Na 1 -Ca 21 exchange protein. Biochim Biophys Acta 1988; 945:298–306.

    Google Scholar 

  17. Nicoll DA, Longoni S, Philipson KD. Molecular cloning and functional expression of the cardiac sarcolemmal Na 1 -Ca 21 exchanger. Science 1990;250:562–565.

    Google Scholar 

  18. Kofuji P, Hadley RW, Kieval RS, Lederer WJ, Schulze DH. Expression of the Na-Ca exchanger in diverse tissues: a study using the cloned human cardiac Na-Ca exchange. Am J Physiol 1992;263:C1241–C1249.

    Google Scholar 

  19. Low W, Kasir J, Rahamimoff H. Cloning of the rat heart Na 1 -Ca 21 exchanger and its functional expression in HeLa cells. FEBS Lett 1993;316:63–67.

    Google Scholar 

  20. Komuro I, Wenninger E, Philipson KD, Izumo S. Molecular cloning and characterization of the human cardiac Na/Ca ex-changer cDNA. Proc Natl Acad Sci USA 1992;89:4769–4773.

    Google Scholar 

  21. Hilgemann DW, Nicoll DA, Philipson KD. Charge move-ment during Na 1 translocation by native and cloned cardiac Na 1 /Ca 21 exchanger. Nature 1991;352:715–718.

    Google Scholar 

  22. Niggli E, Lederer WJ. Molecular operations of the so-dium-calcium exchanger revealed by confirmation currents. Nature 1991;349:621–624.

    Google Scholar 

  23. Frank JS, Mottino G, Reid D, Molday RS, Philipson KD. Distribution of the Na 1 -Ca 21 exchange protein in mammal-ian cardiac myocytes: an immunofluorescence and immuno-colloidal Gold-labelling study. J Cell Biol 1992;117:337–345.

    Google Scholar 

  24. DiPolo R. Calcium influx in internally dialyzed squid giant axons. J Gen Physiol 1979;73:91–113.

    Google Scholar 

  25. Philipson KD. The cardiac Na 1 -Ca 21 exchanger. In Langer G (ed), Calcium and the Heart. New York: Raven Press, Ltd., 1990:85–108.

    Google Scholar 

  26. Hilgemann DW. Regulation and deregulation of cardiac Na 1 -Ca 21 exchange in giant excised sarcolemmal mem-brane patches. Nature 1990;344:242–245.

    Google Scholar 

  27. Matsuoka S, Nicoll DA, Hryshko LV, Levitssky DO, Weiss JN, Philipson KD. Regulation of the cardiac Na 1-Ca 21 ex-change by Ca 21. Mutational analysis of the Ca 21-binding domain. J Gen Physiol 1995;105:403–420.

    Google Scholar 

  28. Schulze D, Kofuji P, Hadley R, Kirby MS, Kieval RS, Doer-ing A, Niggli E, Lederer WJ. Sodium/calcium exchanger in heart muscle, molecular biology, cellular function, and its special role in excitation-contraction coupling. Cardiovasc Res 1993;27:1726–1734.

    Google Scholar 

  29. Shigekawa M, Iwamoto T, Wakabayashi S. Phosphorylation and modulation of Na/Ca exchanger in vascular smooth mus-cle cells. Ann NY Acad Sci 1996;779:249–257.

    Google Scholar 

  30. Lin L, Kao L, Westhead EW. Agents that promote protein phosphorylation increase catecholamine secretion and in-hibit the activity of the Na/Ca exchanger in bovine chromaf-fin cells. Ann NY Acad Sci 1996;779:395–396.

    Google Scholar 

  31. Philipson KD, Nicoll DA, Matsuoka S, Hryshko LV, Levit-sky DO, Weiss JN. Molecular regulation of the Na 1 -Ca 21 exchanger. Ann NY Acad Sc 1996;779:20–28.

    Google Scholar 

  32. Bean BP. Classes of calcium channel in vertebrate cells. Annu Rev Physiol 1989;51:367–384.

    Google Scholar 

  33. Gibbons WR, Fozzard HA. Relationships between voltage and tension in sheep cardiac Purkinje fibers. J Gen Physiol 1975;65:345–356.

    Google Scholar 

  34. Nilius B. A novel type of cardiac calcium channel in ventricu-lar cells. Nature 1985;316:443–446.

    Google Scholar 

  35. Hagiwara N, Irisawa H, Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rab-bit sino-atrial node cells. J Physiol (Lond) 1988;395: 233–253.

    Google Scholar 

  36. Bogdanov KY, Ziman BD, Spurgeon HA, Lakatta EG. L-and T-type calcium currents differ in finch and rat ventricu-lar cardiomyocytes. J Mol Cell Cardiol 1995;27:2581–2593.

    Google Scholar 

  37. Balke CW, Gold MR. Calcium channels in the heart: an over-view. Heart Dis Stroke 1992;1:398–403.

    Google Scholar 

  38. Catterall WA. Structure and function of voltage-sensitive ion channel. Science 1988;242:50–61.

    Google Scholar 

  39. Singer-Lahat D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N. The roles of the subunits in the function of the calcium channel. Science 1991;253:1553–1557.

    Google Scholar 

  40. Catterall WA. Functional subunit structure of voltage-gated calcium channels. Science 1991;253:1499–1500.

    Google Scholar 

  41. Reuter H. Calcium channel modulation by neurotransmit-ters, enzymes and drugs. Nature 1983;301:569–574.

    Google Scholar 

  42. Maki T, Gruver EJ, Davidoff AJ, Izzo N, Toupin D, Colucci W, Marks AR. Regulation of calcium channel expression in neonatal myocytes by catecholamines. J Clin Invest 1996;97: 656–663.

    Google Scholar 

  43. Sumii K, Sperelakis N. cGMP-dependent protein kinase regulation of the L-type Ca 21 current in rat ventricular myo-cytes. Circ Res 1995;77:803–812.

    Google Scholar 

  44. Sperelakis N. Properties of calcium channels in cardiac mus-cle and vascular smooth muscle. Mol Cell Biochem 1990; 99:97–109.

    Google Scholar 

  45. Katz AM. Calcium channel diversity in the cardiovascular system. J Am Coll Cardiol 1996;28:522–529.

    Google Scholar 

  46. Dunham ET, Glynn LM. Adenosine triphosphatase activity and the active movements of alkali metal ions. J Physiol (Lond) 1961;156:274–293.

    Google Scholar 

  47. Schatzmann HJ. The calcium pump of the surface membrane and the sarcoplasmic reticulum. Annu Rev Physiol 1989;51: 473–485.

    Google Scholar 

  48. Monteith GR, Roufogalis BD. The plasma membrane cal-cium pump — a physiological perspective on its regulation. Cell Calcium 1995;18:459–470.

    Google Scholar 

  49. Carafoli E. The plasma membrane calcium pump: structure, function and regulation. Biochim Biophys Acta 1992;1101: 266–267.

    Google Scholar 

  50. Suju M, Davila M, Poleo G, Docampo R, Benaim G. Phospha-tidylethanol stimulates the plasma-membrane calcium pump from human erythrocytes. Biochem J 1996;317:933–938.

    Google Scholar 

  51. Carafoli E. How calcium crosses plasma membranes includ-ing the sarcolemma. In Opie L (ed), Calcium Antagonists and Cardiovascular Disease. New York: Raven Press, 1994: 29–41.

    Google Scholar 

  52. Skou JC. The energy coupled exchange of Na 1 for K 1 across the cell membrane. The Na 1, K 1-pump. FEBS Lett 1990;268: 314–324.

    Google Scholar 

  53. Sulakhe PV, Elimban V, Dhalla NS. Characterization of a partially purified Na 1, K 1-ATPase from dog heart. Adv Myocardial 1985;6:249–257.

    Google Scholar 

  54. von Schatzmann HJ. Herzglykoside als hemmstoffe für den aktiven kalium und natrium transport durch die erythrocy-tenmembran. Helv Physiol Pharmacol Acta 1953;11:346–354.

    Google Scholar 

  55. Lingrel JB. Na,K-ATPase: isoform structure, function and expression. J Bioenger Biomemb 1992;24:263–270.

    Google Scholar 

  56. Sweadner KJ. Isozymes of Na,K-ATPase. Biochim Biophys Acta 1989;988:185–220.

    Google Scholar 

  57. Lingerl JB, Orlowski J, Shull MM, Price EM. Molecular genetics of Na,K-ATPase. Prog Nucleic Acids Res Mol Biol 1990;38:37–89.

    Google Scholar 

  58. Young RM, Lingrel JB. Tissue distribution of mRNAs en-coding the a isoform and b subunit of rat Na 1,K 1-ATPase. Biochem Biophys Res Commun 1987;145:52–58.

    Google Scholar 

  59. Orlowski J, Lingrel JB. Tissue specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem 1988;263:10436–10442.

    Google Scholar 

  60. McDonough AA, Geering K, Farley RA. The sodium pump needs beta subunit. FASEB J 1990;4:1598–1605.

    Google Scholar 

  61. Geering K. The functional role of the beta-subunit in the maturation and intracellular transport of Na,K-ATPase. FEBS Lett 1991;285:189–193.

    Google Scholar 

  62. Noguchi A, Higashi K, Kawamura M. Assembly of the a-subunit of Torpedo californica Na 1-K 1 -ATPase with its pre-existing b-subunit in Xenopus oocytes. Biochim Biophys Acta 1990;1023:247–253.

    Google Scholar 

  63. Kawamura M, Nagano K. Evidence for essential disulfide bonds in the b-subunit of (Na 1-K 1 )-ATPase. Biochim Bio-phys Acta 1984;774:188–192.

    Google Scholar 

  64. Kirley TL. Determination of three disulfide bonds and one free sulfhydryl in the b subunit of (Na 1,K 1)-ATPase. J Bio-chem Chem 1989;264:7185–7192.

    Google Scholar 

  65. Horisberger JD, Lemas V, Kraehenbuhl JP, Rossier BC. Structure-function relationship of Na 1 -K 1 -ATPase. Annu Rev Physiol 1991;53:565–584.

    Google Scholar 

  66. Shamraj OI, Melvin D, Lingrel JB. Expression of Na 1, K 1-ATPase isoforms in human heart. Biochem Biophys Res Comm 1991;179:1434–1440.

    Google Scholar 

  67. Sweadner KJ, Herrera VL, Amato S, Moellmann A, Gibbons DK, Repke KR. Immunologic identification of Na 1, K 1-AT-Pase isoforms in myocardium. Isoform change in deoxycor-ticosterone acetate-salt hypertension. Circ Res 1994;74:669–678.

    Google Scholar 

  68. Ng YC, Book CB. Expression of Na 1, K 1-ATPase a1 and a3 isoforms in adult and neonatal ferret hearts. Am J Physiol 1992;263:H1430–H1436.

    Google Scholar 

  69. Dowell A. Distribution of a1 and a2 (Na 1,K 1)-ATPase iso-forms between the junctional (t-tubular) and nonjunctional sarcolemmal domains of rat ventricle. Biochem Pharmacol 1991;41:313–315.

    Google Scholar 

  70. Tada M, Yamamoto T, Tonomura Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev 1978;58:1–79.

    Google Scholar 

  71. Grover AK. Ca-pumps in smooth muscle: one in plasma membrane and another in endoplasmic reticulum. Cell Cal-cium 1985;6:227–236.

    Google Scholar 

  72. Grover AK, Khan I. Calcium pump isoforms: diversity, se-lectivity and plasticity. Cell Calcium 1992;13:9–17.

    Google Scholar 

  73. Zarain-Herzberg A, MacLennan DH, Periasamy M. Charac-terization of rabbit cardiac sarco(endo)-plasmic reticulum Ca 21-ATPase gene. J Biol Chem 1990;265:4670–4677.

    Google Scholar 

  74. Fuji J, Zarain-Herzberg A, Willard HF, Tada M, MacLennan DH. Structure of the rabbit phospholamban gene, cloning of the human cDNA, and assignment of the gene to human chromosome 6. J Biol Chem 1991;266:11669–11675.

    Google Scholar 

  75. Toyofuku T, Zak R. Characterization of cDNA and genomic sequences encoding a chicken phospholamban. J Biol Chem 1991;266:5375–5383.

    Google Scholar 

  76. Toyofuku, Kurzydlowski K, Tada M, MacLennan DH. Identification of regions in the Ca 21 -ATPase of sarcoplasmic reticulum that affect function associated with phospholam-ban. J Biol Chem 1993;268:2809–2815.

    Google Scholar 

  77. Kranias EG. Regulation of Ca 21 transport by protein phos-phatase activity associated with cardiac sarcoplasmic reticu-lum. J Biol Chem 1985;260:11006–11010.

    Google Scholar 

  78. Sasaki T, Inui M, Kimura Y, Kuzuya T, Tada M. Molecular mechanism of regulation of Ca 21-pump ATPase by phospho-lamban in cardiac sarcoplasmic reticulum. Effects of syn-thetic phospholamban peptides on Ca 21-pump ATPase. J Biol Chem 1992;267:1674–1679.

    Google Scholar 

  79. MacLennan DH, Campbell KP, Reithmeier RAF. Calse-questrin. In Cheng WY, (ed.), Calcium and Cell Function, vol. 4. New York: Academic Press, 1983:151–173.

    Google Scholar 

  80. Arai M, Alpert NR, Periasamy M. Cloning and charac-terization of the gene encoding rabbit cardiac calsequestrin. Gene 1991;109:275–279.

    Google Scholar 

  81. Milner RE, Famulski KS, Michalak M. Calcium binding pro-teins in the sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells. Mol Cell Biochem 1992;112:1–13.

    Google Scholar 

  82. Ostwald TJ, MacLennan DH. Isolation of a high affinity calcium binding protein from sarcoplasmic reticulum. J Biol Chem 1974;249:974–979.

    Google Scholar 

  83. Imanaka-Yoshida K, Amitani A, Ioshii SO, Koyabu S, Yamakado T, Yoshida T. Alterations of expression and distri-bution of the Ca 21-storing proteins in endo/sarcoplasmic reticulum during differentiation of rat cardiomyocytes. J Mol Cell Cardiol 1996;28:553–562.

    Google Scholar 

  84. Leberer E, Timms BG, Campbell KP, MacLennan DH. Puri-fication, calcium binding properties, and ultrastructural lo-calization of the 53,000-and 160,000 (sarcolumenin)-dalton glycoproteins of the sarcoplasmic reticulum. J Biol Chem 1990;265:10118–10124.

    Google Scholar 

  85. Imagawa T, Smith JS., Coronado R, Campbell KP. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca 21-permeable pore of the calcium release channel. J Biol Chem 1987;262:16636–16643.

    Google Scholar 

  86. Lai FA, Erickson HP, Rousseau E, Lui QY, Meissner G. Purification and reconstitution of the calcium release chan-nel from skeletal muscle. Nature 1988;331:315–319.

    Google Scholar 

  87. Finkel MS, Shen L, Romeo RC, Oddis CV, Salama G. Radi-oligand binding and inotropic effects of ryanodine in the cardiomyopathic Syrian hamster. J Cardiovasc Pharmacol 1992;19:610–617.

    Google Scholar 

  88. Gwathmey JK, Copelas L, MacKinnon R, Schone FJ, Gross-man W, Morgan JP. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 1987;61:70–76.

    Google Scholar 

  89. Dixon IMC, Hata T, Dhalla NS. Sarcolemmal calcium trans-port in congestive heart failure due to myocardial infarction in rats. Am J Physiol 1992;262:H1378–H1394.

    Google Scholar 

  90. Afzal N, Dhalla NS. Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol 1992;262:H868–H874.

    Google Scholar 

  91. Limas CJ, Olivari MT, Goldenberg IF, Levine TB, Benditt DG, Simon A. Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res 1987;21:601–605.

    Google Scholar 

  92. Arai M, Matsui H, Periasamy M. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 1994;74:555–564.

    Google Scholar 

  93. Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M, MacLennan DH, Alpert NR, Periasamy M. Regulation of myocardial Ca 21-ATPase and phospholamban mRNA ex-pression in response to pressure overload and thyroid hor-mone. Proc Natl Acad Sci USA 1989;86:2966–2970.

    Google Scholar 

  94. Matsui, MacLennan DH, Alpert N, Periasamy M. Sarco-plasmic reticulum gene expression in pressure overload-in-duced cardiac hypertrophy in rabbit Am J Physiol 1995; 268:C252–C258.

    Google Scholar 

  95. Kiss E, Ball NA, Kranias EG, Walsh RA. Differential changes in cardiac phospholamban and sarcoplasmic reticu-lar Ca 21 -ATPase protein levels. Effect on Ca 21 transport and mechanics in compensated pressure-overload hypertro-phy and congestive heart failure. Circ Res 1995;77:759–764.

    Google Scholar 

  96. de la Bastie D, Levitsky D, Rappaport L, Mercadier JJ, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lom-prée AM. Function of the sarcoplasmic reticulum and ex-pression of its Ca 21 ATPase gene in pressure overload-in-duced cardiac hypertrophy in the rat. Circ Res 1990;66: 554–564.

    Google Scholar 

  97. Arai M, Suzuki T, Nagai R. Sarcoplasmic reticulum genes are upregulated in mild cardiac hypertrophy but downregu-lated in severe cardiac hypertrophy induced by pressure overload. J Mol Cell Cardiol 1996;28:1583–1590.

    Google Scholar 

  98. Feldman AM, Weinberg EO, Ray PE, Lorell BH. Selective changes in cardiac gene expression during compensated hy-pertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 1993;73:184–192.

    Google Scholar 

  99. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 1993;72:463–469.

    Google Scholar 

  100. Arai MK, Otsu T, MacLennan DH, Alpert NR, Periasamy M. Effect of thyroid hormone on the expression of mRNA en-coding sarcoplasmic reticulum proteins. Circ Res 1991;69: 266–276.

    Google Scholar 

  101. Lompré AM, de la Bastie D, Boheler KR, Schwartz K. Char-acterization and expression of the rat heart sarcoplasmic reticulum Ca 21 ATPase mRNA. FEBS Lett 1989;249:35–41.

    Google Scholar 

  102. Takahashi T, Schunkert H, Isoyama H, Wei JY, Nadal-Gi-nard B, Grossman W, Izumo S. Age-related differences in the expression of proto-oncogene and contractile protein genes in response to pressure overload in the rat myocardium. J Clin Invest 1992;89:939–946.

    Google Scholar 

  103. Schwinger RH, Böhm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E. Un-changed protein levels of SERCA2 and phospholamban but reduced Ca 21 uptake and Ca 21 ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy pa-tients compared with patients with nonfailing hearts. Circu-lation 1995;92:3220–3228.

    Google Scholar 

  104. Zarain-Herzberg A, Afzal N, Elimban V, Dhalla NS. De-creased expression of cardiac sarcoplasmic reticulum Ca 21 pump ATPase in congestive heart failure due to myocardial infarction. Mol Cell Biochem 1996;163/164:285–290.

    Google Scholar 

  105. Nirasawa Y, Akera T. Pressure-induced cardiac hypertro-phy: changes in Na,K- ATPase and glycoside actions in cats. Eur J Pharmacol 1987;137:77–83.

    Google Scholar 

  106. Kim CH, Fan TH, Kelly PF, Himura Y, Delehanty JM, Hang CL, Liang CS. Isoform-specific regulation of myocardial Na,K-ATPase a-subunit in congestive heart failure. Role of norepinephrine. Circulation 1994;89:313–320.

    Google Scholar 

  107. Charlemagne D, Orlowski J, Oliviero P, Rannou F, Sainte-Beuve C, Swynghedauw B, Lane LK. Alteration of Na,K-ATPase subunit mRNA and protein in hypertrophied rat heart. J Biol Chem 1994;269:1541–1547.

    Google Scholar 

  108. Shamraj OI, Grupp IL, Grupp G, Melvin D, Gradoux N, Kremers W, Lingrel JB, De Pover A. Characterization of Na/K-ATPase, its isoforms, and the inotropic response to ouabain in isolated failing human hearts. Cardiovasc Res 1993;27:2229–2237.

    Google Scholar 

  109. Silver LH, Houser SR. Decreased sodium-potassium pump activity in isolated hypertrophied feline ventricular myo-cytes. Life Sci 1985;37:607–615.

    Google Scholar 

  110. Spinale FG, Clayton C, Tanaka R, Fullbright BM, Mukher-jee R, Schulte BA, Carwford FA, Zile MR. Myocardial Na 1, K 1-ATPase in tachycardia induced cardiomyopathy. J Mol Cell Cardiol 1992;24:277–294.

    Google Scholar 

  111. Dixon IMC, Hata T, Dhalla NS. Sarcolemmal Na 1 -K 1 -AT-Pase activity in congestive heart failure due to myocardial Infarction. Am J Physiol 1992;262:C664–C671.

    Google Scholar 

  112. Studer R, Reinecke H, Bilger J, Eschehagen T, Böhm M, Hasenfuss G, Just H, Holtz J, Drexler H. Gene expression of the cardiac Na 1 -Ca 21 exchanger in end-stage human heart failure. Circ Res 1994;75:443–453.

    Google Scholar 

  113. Dhalla NS, Das PK, Sharma GP. Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol 1978;10:363–385.

    Google Scholar 

  114. Dhalla NS, Dixon IMC, Beamish RE. Biochemical basis of heart function and contractile failure. J Appl Cardiol 1991;6:7–30.

    Google Scholar 

  115. Dhalla NS, Afzal N, Beamish RE, Naimark B, Takeda N, Nagano M. Pathophysiology of cardiac dysfunction in con-gestive heart failure. Can J Cardiol 1993;9:873–887.

    Google Scholar 

  116. Dhalla NS, Wang X, Beamish RE. Intracellular calcium han-dling in normal and failing hearts. Exp Clin Cardiol 1996; 1:7–20.

    Google Scholar 

  117. Movsesian MA, Karimi M, Green K, Jones LR. Ca 21-trans-porting ATPase, phospholamban and calsequestrin levels in nonfailing and failing human myocardium. Circulation 1994;90:653–657.

    Google Scholar 

  118. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posivel G, Kuwajima K, Mikoshiba G, Just H, Hasenfuss G. Alterations of sarcoplasmic reticulum proteins in failing hu-man dilated cardiomyopathy. Circulation 1995;92:778–784.

    Google Scholar 

  119. Linck B, Boknik P, Eschenhagen T, Maller FU, Neumann J, Nose M, Jones LR, Schmitz W, Scholz H. Messenger RNA expression and immunological quantification of phospholam-ban and SR Ca 21 -ATPase in failing and nonfailing human hearts. Cardiovasc Res 1996;31:625–632.

    Google Scholar 

  120. Mercadier JJ, Lompré AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K. Altered sarcoplasmic reticulum Ca 21 -ATPase gene expression in the human ventricle during end-stage heart failure. J Clin In-vest 1990;85:305–309.

    Google Scholar 

  121. Brillantes AM, Allen P, Takahashi T, Izumo S, Marks AR. Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res 1992;71:18–26.

    Google Scholar 

  122. Hisamatsu Y, Ohkusa T, Kihara Y, Inoko M, Ueyama T, Yano M, Sasayama S, Matsuzaki M. Early changes in the functions of cardiac sarcoplasmic reticulum in volume-overload car-diac hypertrophy in rats. J Mol Cell Cardiol 1997;29: 1097–1109.

    Google Scholar 

  123. Keller E, Bond M, Moravec CS. Progression of left ventricu-lar hypertrophy does not change the sarcoplasmic reticulum calcium store in the spontaneously hypertensive rat heart. J Mol Cell Cardiol 1997;29:461–469.

    Google Scholar 

  124. Gupta RC, Shimoyama H, Tanimura M, Nair R, Lesch M, Sabbah HN. SR Ca 21 -ATPase activity and expression in ventricular myocardium of dogs with heart failure. Am J Physiol 1997;273:H12–H18.

    Google Scholar 

  125. Yamaguchi F, Sanabe A, Takeo S. Cardiac sarcoplasmic re-ticular function in rats with chronic heart failure following myocardial infarction. J Mol Cell Cardiol 1977;29:753–763.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhalla, N.S., Shao, Q. & Panagia, V. Remodeling of Cardiac Membranes During the Development of Congestive Heart Failure. Heart Fail Rev 2, 261–272 (1998). https://doi.org/10.1023/A:1009749915724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009749915724

Navigation