Skip to main content
Log in

Study on the Si–Si Vibrational States of the Near Surface Region of Porous Silicon

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The Si–Si vibrational states near the surface region of porous silicon has been characterized using Fourier Transform Infrared Spectroscopy (FTIR) due to its enlarged surface area. By means of anodic etch and oxidization experiments, two Si–Si vibration modes of porous silicon have been identified as near the surface regions and in the bulk, respectively. The intensity of absorption peak at 620 cm1, which originates from the Si–Si bonds vibrations on the surface and near surface regions of porous silicon, is found to vary depending on the length of etch and degree of oxidation of porous silicon, which exists before etching and is recovered again after fully oxidation. The peak of 610 cm1 doesn't change throughout the oxidation experiment, and to be assigned for Si–Si bond vibrations in the bulk. With an extra irradiation of Nd:Yag laser on the PS sample the Raman and FTIR spectra reveal a red shift. These results can give an interpretation to explain the different phenomenon of Si–Si vibrations of Raman and FTIR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Google Scholar 

  2. S. Ottow, V. Lehmann, and H. Föll, Appl. Phys. A 63, 153 (1996).

    Google Scholar 

  3. S. Strehlke, D. Sarti, A. Krotkus, K. Grigoras, and C. Levy-Clement, Thin Solid Films 297, 291 (1997).

    Google Scholar 

  4. R.T. Collins, P.M. Fauchet, and M.A. Tischler, Phys. Today, January, 24 (1997).

  5. S.M. Prokes and O.J. Glembocki, Phys. Today, August, 83 (1997).

  6. C. Tsai, K.H. Li, J. Sarathy, S. Shih, J.C. Campbell, B.K. Hance, and J.M. White, Appl. Phys. Lett. 59, 2814 (1991).

    Google Scholar 

  7. M.S. Brandt, H.D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, Solid State Commun. 81, 307 (1992).

    Google Scholar 

  8. J.M. Lavine, S.P. Sawan, Y.T. Shieh, and A.J. Bellezza, Appl. Phys. Lett. 62, 1099 (1993).

    Google Scholar 

  9. D.B. Mawhinney, J.A. Glass, Jr., and J.T. Yates, Jr., J. Phys. Chem. B 101, 1202 (1997).

    Google Scholar 

  10. J. Yan, S. Shih, K.H. Jung, D.L. Kwong, M. Kovar, J.M. White, B.E. Gnade, and L. Magel, Appl. Phys. Lett. 64, 1374 (1994).

    Google Scholar 

  11. S. Banerjee, K.L. Narasimhan, and A. Sardesai, Phys. Rev. B 49, 2915 (1994).

    Google Scholar 

  12. P. O'Keeffe, Y. Aoyagi, S. Komuro, T. Kato, and T. Morikawa, Appl. Phys. Lett. 66, 836 (1995). P. O'Keeffe, S. Komuro, T. Morikawa, and Y. Aoyagi, Appl. Surf. Sci. 113/114, 135 (1997).

    Google Scholar 

  13. M.B. Robinson, A.C. Dillon, D.R. Haynes, and S.M. George, Appl. Phys. Lett. 61, 1414 (1992).

    Google Scholar 

  14. N. Rigakis, J. Hilliard, L. Abu Hassan, J.M. Hetrick, D. Andsager, and M.H. Nayfeh, J. Appl. Phys. 81, 440 (1997).

    Google Scholar 

  15. F. Kozlowski and W. Lang, J. Appl. Phys. 72, 5401 (1992).

    Google Scholar 

  16. R. Tsu, H. Shen, and M. Dutta, Appl. Phys. Lett. 60, 112 (1992).

    Google Scholar 

  17. Q. Chen, X.J. Li, Y.B. Jia, J.S. Zhu, and Y. Zhang, J. Phys.: Conden. Matter 9, L151 (1997).

    Google Scholar 

  18. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, Phys. Rev. B 48, 2827 (1993).

    Google Scholar 

  19. S. Guha, G. Hendershot, D. Peebles, P. Steiner, F. Kozlowski, and W. Lang, Appl. Phys. Lett. 64, 613 (1994).

    Google Scholar 

  20. S.K. Deb, N. Mathur, A.P. Roy, S. Banerjee, and A. Sardesai, Solid State Commun. 101, 283 (1997).

    Google Scholar 

  21. X.L. Wu, X.Y. Yuan, S. Tong, X.N. Liu, X.M. Bao, S.S. Jiang, X.K. Zhang, and D. Feng, Solid State Com. 104, 355 (1997).

    Google Scholar 

  22. H. Xia, Y.L. He, L.C. Wang, W. Zhang, X.N. Liu, X.K. Zhang, D. Feng, and H.E. Jackson, J. Appl. Phys. 78, 6705 (1995).

    Google Scholar 

  23. P. Gupta, V.L. Colvin, and S.M. George, Phys. Rew. B37, 8234 (1988).

    Google Scholar 

  24. R.J. Collins and H.Y. Fan, Phys. Rev. 93, 674 (1954).

    Google Scholar 

  25. T.R. Hart, R.L. Aggarwal, and B. Lax, Phys. Rev. B1, 638 (1970).

    Google Scholar 

  26. T.F. Young, I.W. Huang, Y.L. Yang, W.C. Kuo, I.M. Jiang, T.C. Chang, and C.Y. Chang, Appl. Surf. Sci. 102, 404 (1996).

    Google Scholar 

  27. R.L. Headrick, J.M. Baribeau, and Y.E. Strausser, Appl. Phys. Lett. 66, 96 (1995).

    Google Scholar 

  28. R.C. Anderson, R.S. Muller, and C.W. Tobias, J. Electrochem. Soc. 140, 1393 (1993).

    Google Scholar 

  29. Y. Ogata, H. Niki, T. Sakka, and M. Iwasaki, J. Electrochem. Soc. 142, 195 (1995).

    Google Scholar 

  30. E. Ribeiro, F. Cerdeira, and O. Teschke, Solid State Com. 101, 327 (1997).

    Google Scholar 

  31. J.H. Parker, Jr., D.W. Feldman, and M. Ashkin, Phys. Rev. 155, 712 (1967).

    Google Scholar 

  32. F.A. Johnson, Proc. Phys. Soc. (London) 73, 235 (1959).

    Google Scholar 

  33. J.N. Hodgson, “Optical Absorption and Dispersion in Solids,” (Chapman and Hall Ltd., London, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, T., Chen, C., Liou, J. et al. Study on the Si–Si Vibrational States of the Near Surface Region of Porous Silicon. Journal of Porous Materials 7, 339–343 (2000). https://doi.org/10.1023/A:1009622601723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009622601723

Navigation