Skip to main content
Log in

Apoptosis in multiple myeloma: Therapeutic implications

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis is the primary means by which most radio- and chemotherapy modalities kill cancer cells, and abnormalities in the apoptotic pathways may contribute to disease pathogenesis of cancer. Multiple Myeloma (MM) is a hematological malignancy which will affect 14,000 new individuals in the United States in 2001 and remains irreversibly fatal despite all available therapies. The current review focuses on the studies of apoptotic and survival signaling pathways in MM cells, which have both identified novel apoptotic and anti-apoptotic proteins and provided targets for novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr JF, Willie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    PubMed  Google Scholar 

  2. Kerr JF, Winterford CM, Harmon BV. Apoptosis-its significance in cancer and cancer therapy. Cancer 1994; 73: 2013–2026.

    PubMed  Google Scholar 

  3. Willie AH, Kerr JF, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

    PubMed  Google Scholar 

  4. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    PubMed  Google Scholar 

  5. Urashima M, Chauhan D, Hatziyanni M, et al. CD40 ligand triggers interleukin-6 mediated B cell differentiation. Leukemia Research 1996; 20: 507–515.

    PubMed  Google Scholar 

  6. Anderson KC, Jones RC, Morimoto C, Leavitt P, Barut B. Response of purified myeloma cells to hematopoietic growth factors. Blood 1989; 73: 1915–1924.

    PubMed  Google Scholar 

  7. Uchiyama H, Barut BA, MohrbacherAF, Chauhan D, Anderson KC. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates IL-6 secretion. Blood 1993; 82: 3712–3720.

    PubMed  Google Scholar 

  8. Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kB. Blood 1996; 87:1104–1112.

    PubMed  Google Scholar 

  9. Urashima M, Ogata A, Chauhan D, et al. Transforming growth factor b1: Differential effects on multiple myeloma versus normal B cells. Blood 1996; 87: 1928–1938.

    PubMed  Google Scholar 

  10. Anderson K. Advances in the biology of multiple myeloma: Therapeutic applications. Semin Oncol 1999; 26: 10–22.

    Google Scholar 

  11. Bataille R, Jourdan M, Zhang XG, et al. Serum levels of interleukin-6, a potent myeloma cell growth factor, as a reflection of disease severity in plasma cell dyscrasias. Journal of Clinical Investigation 1989; 84: 2008–2011.

    PubMed  Google Scholar 

  12. Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene 1997; 15: 837–843.

    PubMed  Google Scholar 

  13. Chauhan D, Hideshima T, Pandey P, et al. RAFTK/PYK2-dependent and independent apoptosis in multiple myeloma cells. Oncogene 1999; 18: 6733–6740.

    PubMed  Google Scholar 

  14. Lichtenstein A, Tu Y, Fady C, Vescio R, Berenson J. Interleukin-6 inhibits apoptosis of malignant plasma cells. Cell Immunol 1995; 162: 248–255.

    PubMed  Google Scholar 

  15. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochemical Journal 1998; 334: 297–314.

    PubMed  Google Scholar 

  16. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994; 76: 253.

    PubMed  Google Scholar 

  17. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood 1995; 86: 1243.

    PubMed  Google Scholar 

  18. Ogata A, Chauhan D, Teoh G, et al. Interleukin-6 triggers cell growth via the ras-dependent mitogen-activated protein kinase cascade. J Immunology 1997; 159: 2212–2221.

    Google Scholar 

  19. Ogata A, Chauhan D, Urashima M, Teoh G, Treon SP, Anderson KC. Blockade of mitogen-activated protein kinase cascade signaling in interleukin-6 independent multiple myeloma cells. Clinical Cancer Research 1997; 3: 1017–1022.

    PubMed  Google Scholar 

  20. Feng G, Hui C, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science (Wash. DC) 1993; 259: 1607–1611.

    Google Scholar 

  21. Vogel W, Lammers R, Huang J, Ullrich A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 1993; 259: 1611–1614.

    PubMed  Google Scholar 

  22. Jernberg-Wiiklund H, Petterson M, Nilsson K. Recombinant interferon-gamma inhibits the growth of IL-6 dependent human multiple myeloma cell lines in vitro. European Journal of Hematology 1991; 46: 231–239.

    Google Scholar 

  23. Portier M, Zhang XG, Caron E, Lu ZY, Bataille R, Klein B. Gamma-interferon in multiple myeloma: Inhibition of interleukin 6 dependent myeloma cell growth and downregulation of IL-6 receptor expression in vitro. Blood 1993; 81: 3076–3082.

    PubMed  Google Scholar 

  24. Ogata A, Nishimoto N, Shima Y, Yoshizaki K, Kishimoto T. Inhibitory effect of All-trans retinoic acid on the growth of freshly isolated myeloma cells via interference with interleukin-6 signal transduction. Blood 1994; 84: 3040–3046.

    PubMed  Google Scholar 

  25. Schwabe M, Brini AT, Bosco MC, et al. Disruption by interferon-gamma of autocrine IL-6 growth loop in IL-6 dependent U266 myeloma cells by homologous and heterologous downregulation of the IL-6 receptor alpha and beta chains. J Clin Invest 1994; 94: 2317–2325.

    PubMed  Google Scholar 

  26. Chauhan D, Hideshima T, Treon SP, et al. Functional interaction between retinoblastoma protein and stress activated protein kinase in multiple myeloma cells. Cancer Res 1999; 59: 1192–1195.

    PubMed  Google Scholar 

  27. Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by JAK-2 inhibitor. Nature 1996; 379: 645–648.

    PubMed  Google Scholar 

  28. Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    PubMed  Google Scholar 

  29. Marra F, Choudhary GG, Abboud HE. Interferon-gamma mediated activation of STAT-1 regulates growth-induced mitogenesis. J Clin Invest 1996; 98: 1218–1239.

    PubMed  Google Scholar 

  30. Frank DA. STAT signaling in the pathogenesis and treatment of cancer. Mol Med 1999; 5: 432–456.

    PubMed  Google Scholar 

  31. Carlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of STA-3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–115.

    PubMed  Google Scholar 

  32. Neiborowska-Skaska M, Wasik MA, Slupianek A, et al. Siganal tranducer and activator of transcription (STAT)-5 activation by Bcr-Abl is dependent on intact Src homology (SH3) and SH2 domains of Bcr-Abl, and is required for leukemogenesis, J Exp Med 1999; 189: 1229–1242.

    PubMed  Google Scholar 

  33. Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse STAT-3 gene leads to early embryonic lethality. Proc Natl Acad Sci 1997; 94: 3801–3804.

    PubMed  Google Scholar 

  34. Urashima M, Teoh G, Ogata A, et al. Characterization of p16INK4A expression in multiple myeloma and plasma cell leukemia. Clinical Cancer Research 1997; 3: 2173–2179.

    PubMed  Google Scholar 

  35. Teoh G, Urashima M, Ogata A, et al. MDM2 protein overexpression promotes proliferation and survival of multiple myeloma cells. Blood 1997; 90: 1982–1992.

    PubMed  Google Scholar 

  36. Urashima M, Ogata A, Chauhan D, et al. Interleukin-6 promotes multiple myeloma cell growth via phosphorylation of Retinoblastoma protein. Blood 1996; 88: 2219–2227.

    PubMed  Google Scholar 

  37. Urashima M, Teoh G, Chauhan D, et al. Interleukin-6 overcomes p21WAF1upregulation and G1 growth arrest induced by dexamethasone and interferon-g in multiple myeloma cells. Blood 1997; 90: 279–289.

    PubMed  Google Scholar 

  38. Urashima M, Teoh G, Ogata A, et al. Role of CDK4 and p16INK4A in interleukin-6-mediated growth of multiple myeloma. Leukemia 1997; 11: 1957–1963.

    PubMed  Google Scholar 

  39. Chauhan D, Kharbanda S, Ogata A, et al. Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood 1997; 89: 227–234.

    PubMed  Google Scholar 

  40. Chauhan D, Pandey P, Ogata A, et al. Cytochrome-c dependent and independent induction of apoptosis in multiple myeloma cells. Journal of Biological Chemistry 1997; 272: 29995–29997.

    PubMed  Google Scholar 

  41. Xu F, Sharma S, Gardner S, et al. Interleukin-6 induced inhibition of multiple myeloma cell apoptosis: Support for the hypothesis that protection is mediated via inhibition of the JNK/SAPK pathway. Blood 1998; 92: 241–251.

    PubMed  Google Scholar 

  42. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312–1316.

    PubMed  Google Scholar 

  43. Casiola-Rosen L, Nikolson DW, Chang T, et al. Apopain/ CPP32 cleaves proteins that are essential for cellular repair-A fundamental principle of apoptotic death. J Exp Med 1996;183: 1957–1964.

    PubMed  Google Scholar 

  44. Emoto Y, Mannome Y, Meinhardt G, et al. Proteolytic activation of protein kinase C-Delta by an ICE-Like protease in apototic cells. Embo J 1995; 14: 6148–6156.

    PubMed  Google Scholar 

  45. Santos AS, Naoufal Z, Kroemer G. Mitochondria as regulator of apoptosis: Doubt no more. Biochimica et Biophysica Acta 1998; 1366: 151–165.

    PubMed  Google Scholar 

  46. Marchetti P, Zamzami N, Joseph B, et al. The novel retiniod 6-[3-(1-adamantyl]-2naphtalene carboxylic acid can trigger apoptosis through a mitochondrial pathway independent of the nucleus. Cancer Research 1999; 59: 6257–6266.

    PubMed  Google Scholar 

  47. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to triggerDNA fragmentation during apoptosis. Cell 1997; 89: 175–184.

    Article  PubMed  Google Scholar 

  48. Yang J, Liu X, Balla K, et al. Prevention of apoptosis by Bcl-2-Release of Cytochrome-c from the mitochondria blocked. Science 1997; 275: 1129–1136.

    Article  PubMed  Google Scholar 

  49. Kluck RM, Kashibatta S. A lively meeting of a deathly topic. Apoptosis 1997; 2: 337–342.

    PubMed  Google Scholar 

  50. Avraham S, London R, Fu YG, et al. Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. Journal of Biological Chemistry 1995; 270: 27742–27751.

    PubMed  Google Scholar 

  51. Lev S, Moreno H, Martinez R, et al. Protein tyrosine kinase PYK2 involved in CA2+-induced regulation of ion channel and MAP kinase functions. Nature 1995; 376: 737–745.

    PubMed  Google Scholar 

  52. Xiong WC, Parsons JT. Induction of apoptosis after expression of PYK2, a tyrosine kinase structurally related to focal adhesion kinase. Journal of Cell Biology 1997; 139: 529–539.

    PubMed  Google Scholar 

  53. Feng GS. Shp-2 tyrosine phosphatase: Signaling one cell or many. Experimental Cell Research 1999; 253: 47–54.

    PubMed  Google Scholar 

  54. Neel BG, Tonks NK. Protein tyrosine phosphatases in signal transduction. Current Opinion in Cell Biology 1997; 9: 193–204.

    PubMed  Google Scholar 

  55. Streuli M. Protein tyrosine phosphatases in signaling. Current Opinion in Cell Biology 1996; 8: 182–188.

    PubMed  Google Scholar 

  56. Vanvactor D, O'Reilly AM, Neel BG. Genetic analysis of protein tyrosine phosphatases. Current Opinion in Genetics & Development 1998; 8: 112–126.

    Google Scholar 

  57. Saxton TM, Pawson T. Morophogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 3790–3795.

    PubMed  Google Scholar 

  58. Shi ZQ, Lu W, Feng GS. The SHP-2 tyrosine phosphatase has opposite effects in mediating the activation of extracellular signal-regulated and c-jun NH2-terminal mitogen-activated protein kinases. Journal of Biological Chemistry 1998; 273: 4904–4908.

    PubMed  Google Scholar 

  59. Marengere LEM, Waterhouse P, Duncan GS, et al. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 1996; 272: 1170–1173.

    PubMed  Google Scholar 

  60. Treon SP, Teoh G, Urashima M, et al. Anti-estrogens induce apoptosis of multiple myeloma cells. Blood 1998; 92: 1749–1757.

    PubMed  Google Scholar 

  61. Treon SP, Chauhan D, Raje N, Teoh G, Webb I, Anderson KC. Recombinant human TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis of human multiple myeloma cells. Blood 1998; 92: 6349.

    Google Scholar 

  62. Vacca A, Ribatti D, Presta M, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999; 93: 3064–3073.

    PubMed  Google Scholar 

  63. Munshi N, Wilson CC, Penn MJ, et al. Angiogenesis in newly diagnosed multiple myeloma: Poor prognosis with increased microvessel density in bone marrow biopsies. Blood 1998; 92 (Suppl): 98a.

    Google Scholar 

  64. Rajkumar SV, Fonseca R, Witzig TE, Gertz MA, Greipp PR. Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia 1999; 13: 469–472.

    PubMed  Google Scholar 

  65. Singhal S, Mehta J, Desikan R, et al. Anti-tumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341: 1565–1571.

    PubMed  Google Scholar 

  66. Weber DM, Gavino M, Delasalle K, Rankin K, Girault S, Alexanian R. Thalidomide alone or with dexamethasone for multiple myeloma. Blood Supple 1999; 94: Abstract 2686.

  67. Geitz H, Handt S, Zwingengerger K. Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology 1996; 32: 213–221.

    Google Scholar 

  68. Corral LG, Haslett PAJ, Muller GW, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-a. J Immunol 1999; 163: 380–386.

    PubMed  Google Scholar 

  69. Haslett PAJ, Corral LG, Albert M, Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med 1998; 187: 1885–1892.

    PubMed  Google Scholar 

  70. Bellamy W, Richter L, Frutiger Y, Grogan T. Expression of vascular endothelial growth factor and its receptor in hematological malignancies. Cancer Research 1999; 59: 728–733.

    PubMed  Google Scholar 

  71. Teicher BA, Ara G, Herbst R, Palonmbella VJ, Adams J. The Proteosome inhibitor PS-341 in cancer therapy. Clin Can Res 1999; 5: 2638–2645.

    Google Scholar 

  72. Sonneveld P. Drug resistance in myeloma. In: VI International Workshop on Multiple Myeloma. Boston, 1997.

  73. Salmon SE, Dalton WS, Grogan TM, et al. Multidrug-resistant myeloma: Laboratory and clinical effects of verapamil as a chemosensitizer. Blood 1991; 78: 44–50.

    PubMed  Google Scholar 

  74. Reed JC. Bcl-2 family of proteins. Oncogene 1998; 17: 3225–3236.

    PubMed  Google Scholar 

  75. Reed JC. Dysregulation of apoptosis in cancer. J Clin Onco 1999; 17: 2941–2948.

    Google Scholar 

  76. Campos L, Sabido O, Roualt JP, Guyatat D. Effects of Bcl-2 antisense oligodeoxenucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 1994; 84: 595–600.

    PubMed  Google Scholar 

  77. Feinman R, Koury J, Thames M, Barlogie B, Epstein J. Role of NF-kB in the rescue of multiple myeloma cells from glucocorticoids-induced apoptosis by Bcl-2. Blood 1999; 93: 3044–3052.

    PubMed  Google Scholar 

  78. Bloem A, Lockhorst H. Bcl-2 antisense therapy in multiple myeloma. Pathologie et Biologie 1999; 47: 216–220.

    Google Scholar 

  79. Tosi P, Pellacani A, Visani G, et al. In vitro treatment with retinoids decreases Bcl-2 protein expression and enhances dexamethasone-induced cytotoxicity and apoptosis in multiple myeloma cells. Euro J Hemat 1999; 62: 143–148.

    Google Scholar 

  80. Tu YP, Renner S, Xu FH, et al. Bcl-x expression in multiple myeloma-possible indicator of chemoresistance. Can Res 1998; 58: 256–262.

    Google Scholar 

  81. Puthier D, Bataille R, Barille S, et al. Myeloma cell growth arrest, apoptosis, and interleukin 6 receptor modulation induced by EB1089, a vitamin D3 derivative, alone or in association with dexamethasone. Blood 1996; 88: 4659–4666.

    PubMed  Google Scholar 

  82. Schwarze MMK, Hawley RG. Prevention of myeloma cell apoptosis by ectopic bcl-2 expression or interleukin-6 mediated upregulation of bcl-XL. Cancer Res 1995; 55: 2262.

    PubMed  Google Scholar 

  83. Sumatran VN, Ealovega MW, Nunez G, Clarke MF, Wicha MS. Overexpression of Bcl-x(s), sensitizes MCF-7 cells to chemotherapy-induced apoptosis. Can Res R 1995; 55: 2507–2510.

    Google Scholar 

  84. Clarke MF, Apel IJ, Benedict MA, et al. A recombinant Bclx( s) adenovirus selectively induces apoptosis in cancer cells but not in normal bone marrow cells. Proc Natl Acad Sci 1995; 92: 11024–11028.

    PubMed  Google Scholar 

  85. Tai YT, Strobel T, Kufe D, Cannistra SA. In vivo cytotoxicity of ovarian cancer cells throuh tumor-selective expression of the BAX gene. Can Res 1999; 59: 2121–2126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, D., Anderson, K.C. Apoptosis in multiple myeloma: Therapeutic implications. Apoptosis 6, 47–55 (2001). https://doi.org/10.1023/A:1009620027205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009620027205

Navigation