Skip to main content
Log in

The Role of Coactivators and Corepressors in the Biology and Mechanism of Action of Steroid Hormone Receptors

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Steroid hormone receptors are members of a superfamily of ligand-dependent transcription factors. As such they have a DNA binding domain that recognizes specific target gene sequences along with separate transcriptional activation domains. What sets steroid hormone receptors (and other nuclear hormone receptors) apart from other families of sequence specific transcriptional activators is the presence of a ligand binding domain (LBD)2 that acts as a molecular switch to turn on transcriptional activity when a hormonal ligand induces a conformational change in the receptor. Upon binding hormone, steroid receptors recruit a novel coactivator protein complex with an essential role in receptor-mediated transcriptional activation. Coactivators function as adaptors in a signaling pathway that transmits transcriptional responses from the DNA bound receptor to the basal transcriptional machinery. Hormone agonists induce a conformational change in the carboxyl-terminal transcriptional activation domain, AF-2, that creates a new protein interaction site on the surface of the LBD that is recognized by LXXLL motifs in the p160 family of coactivators. In contrast, steroid antagonists such as the antiestrogen tamoxifen for the estrogen receptor induce an alternate conformation in AF-2 that occludes the coactivator binding site and recruits corepressors that can actively silence steroid responsive genes. Thus, the cellular availability of coactivators and corepressors is an important determinant in the biological response to both steroid hormone agonists and antagonists. This paper provides an update on the properties and mechanism of action of nuclear receptor coactivators, the nature of the coactivator-binding site, and the structural and mechanistic basis for ligand-dependent binding of coactivators to receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M.-J. Tsai and B. W. O'Malley (1994). Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann. Rev. Biochem. 63:451–486.

    Google Scholar 

  2. D. J. Mangelsdorf, C. Thummel, M. Beato, P. Herrlich, G. Schütz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. M. Evans (1995). The nuclear receptor superfamily: The second decade. Cell 83:835–839.

    Google Scholar 

  3. D. J. Mangelsdorf and R. M. Evans (1995). The RXR heterodimers and orphan receptors. Cell 83:841–850.

    Google Scholar 

  4. L. P. Freedman (1992). Anatomy of the steroid receptor zinc finger region. Endocrine Rev. 13:129–145.

    Google Scholar 

  5. J. Zilliacus, P. H. Wright, J. Carlstedt-Duke, and J-Å. Gustafsson, (1995). Structural determinants of DNA-binding specificity by steroid receptors. Mol. Endocrinol. 9:389–400.

    Google Scholar 

  6. J.-M. Wurtz, W. Bourguet, J.-P. Renaud, V. Vivat, P. Chambon, D. Moras, and H. Gronemeyer (1996). A canonical structure for the ligand-binding domain of nuclear receptors. Nature Structural Biol. 3:87–94.

    Google Scholar 

  7. W. B. Pratt and D. O. Toft (1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrine Rev. 18:306–360.

    Google Scholar 

  8. C. K. Glass (1994). Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocrine Rev. 15:391–407.

    Google Scholar 

  9. P. S. Danielian, R. White, A. Lees, and M. G. Parker (1992). Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11:1025–1033.

    Google Scholar 

  10. M. G. Parker (1995). Structure and function of estrogen receptors. Vitamins Horm. 51:267–287.

    Google Scholar 

  11. K. Dahlman-Wright, A. Wright, J-Å Gustafsson, J. Carlstedt-Duke (1991). Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids. J. Biol. Chem. 266:3107–3112.

    Google Scholar 

  12. L. Tora, J. White, C. Brou, D. Tasset, N. Webster, E. Scheer, and P. Chambon (1989). The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59:477–487.

    Google Scholar 

  13. D. Metzger, S. Ali, J-M. Bornert, and P. Chambon (1995). Characterization of the amino-terminal transcriptional activation function of the human estrogen receptor in animal and yeast cells. J. Biol. Chem. 270:9535–9542.

    Google Scholar 

  14. M. Truss and M. Beato (1993). Steroid hormone receptors: Interaction with deoxyribonucleic acid and transcription factors. Endocrin. Rev. 14:459–479.

    Google Scholar 

  15. V. Giguère (1999). Orphan nuclear receptors: From gene to function. Endocrine Rev. 20:689–725.

    Google Scholar 

  16. Q. Zhao, S. Khorasanizadeh, Y. Miyoshi, M. A. Lazar, and F. Rastinejad (1998). Structural elements of an orphan nuclear receptor-DNA complex. Mol. Cell 1:849–861.

    Google Scholar 

  17. M. Beato and A. Sánchez-Pacheco (1996). Interaction of steroid hormone receptors with the transcription initiation complex. Endocrine Rev. 17:587–609.

    Google Scholar 

  18. M. K. Bagchi, M-J. Tsai, B. W. O'Malley, and S. Y. Tsai (1992). Analysis of the mechanism of steroid hormone receptor-dependent gene activation in cell-free systems. Endocrine Rev. 13:525–535.

    Google Scholar 

  19. D. Tasset, L. Tora, C. Fromental, E. Scheer, and P. Chambon (1990). Distinct classes of transcriptional activating domains function by different mechanisms. Cell 62:1177–1187.

    Google Scholar 

  20. M. E. Meyer, H. Gronemeyer, B. Turcotte, M. T. Bocquel, D. Tasset, and P. Chambon (1989). Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57:433–442.

    Google Scholar 

  21. S. Nagpal, M. Saunders, P. Katner, B. Durand, H. Nakshatri, and P. Chambon (1992). Promoter context-and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 70:1007–1019.

    Google Scholar 

  22. M. T. Tzukerman, A. Esty, D. Santiso-Mere, P. Danielian, M. G. Parker, R. B. Stein, J. W. Pike, and D. P. McDonnell (1994). Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol. Endocrinol. 8:21–30.

    Google Scholar 

  23. L. Xu, C. K. Glass, and M. G. Rosenfeld (1999). Coactivator and corepressor complexes in nuclear receptor function. Cur. Opin. Gene. Dev. 9:140–147.

    Google Scholar 

  24. D. P. Edwards (1999). Coregulatory proteins in nuclear hormone receptor action. Vitamins Horm. 55:165–218.

    Google Scholar 

  25. N. J. McKenna, R. B. Lanz, and B. W. O'Malley (1999). Nuclear receptor coregulators: Cellular and molecular Biology. Endocrine Rev. 20:321–344.

    Google Scholar 

  26. S. A. Oñate, S. Y. Tsai, M-J. Tsai, and B. W. O'Malley (1995). Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357.

    Google Scholar 

  27. H. Hong, K. Kohli, M. J. Garabedian, and M. R. Stallcup (1997). GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17:2735–2744.

    Google Scholar 

  28. J. J. Voegel, M. J. S. Heine, C. Zechel, P. Chambon, and H. Gronemeyer (1996). TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15:3667–3675.

    Google Scholar 

  29. J. Torchia, D. W. Rose, J. Inostroza, Y. Kamei, S. Westin, C. K. Glass, and M. G. Rosenfeld (1997). The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–683.

    Google Scholar 

  30. H. Chen, R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and R. M. Evans (1997). Nuclear receptor coactivatorACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580.

    Google Scholar 

  31. H. Li, P. J. Gomes, and J. D. Chen (1997). Receptor-associated coactivator 3, a steroid/nuclear receptor coactivator that is related to steroid receptor coactivator 1 and transcriptional intermediate factor 2. Proc. Natl. Acad. Sci. U.S.A. 94:8479–8484.

    Google Scholar 

  32. A. Takeshita, N. Kobuchi., G. R. Cardona, C. S. Sven, and W. W. Chin (1997). TRAM-1, a novel 160 kDa thyroid hormone receptor activator exhibits distinct properties from steroid receptor coactirator-1. J. Biol. Chem. 272:27629–27634.

    Google Scholar 

  33. S. L. Anzick, J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X-Y. Guan, G. Sauter, O-P. Kallioniemi, J. M. Trent, and P. S. Meltzer (1997). AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968.

    Google Scholar 

  34. J. Xu, Y. Qiu, F. J. DeMayo, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley (1998). Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925.

    Google Scholar 

  35. R. E. Weiss, J. Xu, G. Ning, J. Pohlenz, B. W. O'Malley, and S. Refetoff (1999). Mice deficient in the steroid receptor coactivator 1 (SRC-1) are resistant to thyroid hormone. EMBO J. 18:1900–1904.

    Google Scholar 

  36. D. M. Heery, E. Kalkhoven, S. Hoare, and M. G. Parker (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–735.

    Google Scholar 

  37. X. F. Ding, C. M. Anderson, H. Ma, H. Hong, R. M. Uht, P. J. Kushner, and M. R. Stallcup (1998). Nuclear receptorbinding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC–1): Multiple motifs with different binding specificities. Mol. Endocrinol. 12(2):302–313.

    Google Scholar 

  38. J. J. Voegel, M. J. S. Heine, M. Tini, V. Vivat, P. Chambon and H. Gronemeyer (1998). The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and-independent pathways. EMBO J. 17:507–519.

    Google Scholar 

  39. E. M. McInerney, D. W. Rose, S. E. Flynn S. Westin et al. (1998). Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12:3357–3368.

    Google Scholar 

  40. B. D. Darimount, R. L. Wagner, J. W. Apriletti, M. R. Stallcup, et al. (1998). Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12:3343–3356.

    Google Scholar 

  41. E. Kalhoven, J. E. Valentine, D. M. Heery and M. G. Parker (1998). Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17:232–243.

    Google Scholar 

  42. H. Ma, H. Hong, S.-M. Huang, R. A. Irvine, P. Webb, P. J. Kushner, G. A. Coetzee, and M. R. Stallcup (1999). Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol. Cell. Biol. 19:6164–6173.

    Google Scholar 

  43. S. A. Oñate, V. Boonyaratanakornkit, T. E. Spencer, S. Y. Tsai, M-J. Tsai, D. P. Edwards, and B. W. O'Malley (1998). The steroid receptor coactivator-one (SRC-1) contains multiple receptor interacting and activation domains that cooperatively enhance the AF-1 and AF-2 domains of steroid receptors. J. Biol. Chem. 273:12101–12108.

    Google Scholar 

  44. D. Chen, H. Ma, H. Hong, S. S. Koh, S.-M. Huang, B. T. Schurter, D. W. Aswad, and M. R. Stallcup (1999). Regulation of transcription by a protein methyltransferase. Science 284:2174–2178.

    Google Scholar 

  45. T. E. Spencer, G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M.-J. Tsai, and B. W. Omalley (1997). Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–197.

    Google Scholar 

  46. P. M. A. Henttu, E. Kalkhoven, and M. G. Parker (1997). AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol. Cell. Biol. 17:1832–1839.

    Google Scholar 

  47. W. Feng, R. C. J. Ribeiro, R. L. Wagner, H. Nguyen, J. W. Apriletti, R. J. Fletterick, J. D. Baxter, P. J. Kushner, and B. L. West (1998). Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280:1747–1750.

    Google Scholar 

  48. A. K. Shiau, D. Barstad, P. M. Loria, L. Cheng, P. J. Kushner, D. A. Agard, and G. L. Greene (1998). The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937.

    Google Scholar 

  49. R. T. Nolte, G. B. Wisely, S. Westin. J. E. Cobbs, M. H. Lambert, R. Kurokawa, M. G. Rosenfeld, T. M. Willson, C. K. Glass, and M. V. Milburn (1998). Ligand binding and coactivator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395:137–143.

    Google Scholar 

  50. S. Imakado, S. Koike, S. Kondo, M. Saka, and M. Muramatsu (1991). the N-terminal transactivation domain of rat estrogen receptor is localized in a hydrophobic domain of eighty amino acids. J. Biochem. 109:684–689.

    Google Scholar 

  51. E. M. McInerney and B. S. Katzenellenbogen (1996). Different regions in activation function-1 of the human estrogen receptor required for antiestrogen-and estradiol-dependent transcription activation. J. Biol. Chem. 271:24172–24178.

    Google Scholar 

  52. M.-E. Meyer, C. Quirin-Stricker, T. Lerouge, M.-T. Bocquel, and H. Gronemeyer (1992). A limiting factor mediates the differential activation of promoters by the human progesterone receptor isoforms. J. Biol. Chem. 267:10882–10887.

    Google Scholar 

  53. K. Dahlman-Wright and I. J. McEwan (1996). Structural studies of mutant glucocorticoid receptor transactivation domains establish a link between transactivation activity in vivo and α-helix-forming potential in vitro. J. Biol. Chem. 35:1323–1327.

    Google Scholar 

  54. K. Dahlman-Wright, H. Baumann, I. J. McEwan, T. Almlöf, A. P. H. Wright, J-Å Gustafsson, and T. Härd (1995). Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor. Proc. Natl. Acad. Sci. U.S.A. 92:1699–1703.

    Google Scholar 

  55. T. Almlö f, J-Å. Gustafsson, and A. P. H. Wright (1997). Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor. Mol. Cell. Biol. 17:934–945.

    Google Scholar 

  56. A. Henriksson, T. Almlöf, J. Ford, I. J. McEwan, J.-Å. Gustafsson, and A. P. H. Wright (1997). Role of the ada adaptor complex in gene activation by the glucocorticoid receptor. Mol. Cell. Biol 17:3065–3073.

    Google Scholar 

  57. A. E. Wallberg, K. E. Neely, J.-Å. Gustafsson, J. L. Workman, A. P. H. Wright, and P. A. Grant (1999). Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain. Mol. Cell. Biol. 19:5952–5959.

    Google Scholar 

  58. H. Endoh, K. Maruyama, Y. Masuhiro, Y. Kobayashi, M. Goto, H. Tai, J. Yanagisawa, D. Metzger, S. Hashimoto, and S. Kato (1999). Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor α. Mol. Cell. Biol. 19:5363–5372.

    Google Scholar 

  59. R. B. Lanz, N. J. McKenna, S. A. Onate, U. Albrecht, J. Wong, S. Y. Tasi, M.-J. Tsai, and B. W. O'Malley (1999). A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27.

    Google Scholar 

  60. P. Webb, P. Nguyen, J. Shinsako, C. Anderson. W. Feng, M. P. Nguyen, D. Chen, S.-M. Huang, S. Subramanian, E. McKinerney, B. S. Katzenellengogen, M. R. Stallcup, and P. J. Kushner (1998). Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol. Endorinol. 12:1605–1618.

    Google Scholar 

  61. P. Alen, F. Claessens, G. Verhoeven, W. Rombauts, and B. Peeters (1999). The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol. Cel. Biol. 19:6085–6097.

    Google Scholar 

  62. W. L. Kraus, E. M. McInerney, and B. S. Katzenellenbogen (1995). Ligand-dependent, transcriptional productive association of the amino-and carboxyl-terminal regions of a steroid hormone nuclear receptor. Proc. Natl. Acad. Sci. U.S.A 92:12314–12318.

    Google Scholar 

  63. C. A. Berrevoets, P. Doesburg, K. Steketee, J. Trapman, and A. O. Brinkmann (1998). Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor 2). Mol. Endocrinol. 12:1172–1183.

    Google Scholar 

  64. T. Ikonen, J. J. Palvimo, and O. A. Janne (1997). Interaction between the amino-and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J. Biol. Chem. 272:29821–29828.

    Google Scholar 

  65. M. J. Tetel, P. H. Giangrande, S. A. Leonhardt, D. P. McDonnell, and D. P. Edwards (1999). Hormone-dependent interaction between the amino-and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol. Endocrinol. 13:910–924.

    Google Scholar 

  66. C. M. Kling. (2000). Estrogen receptor interaction with coactivators and co-repressors. Steroids 65:227–251.

    Google Scholar 

  67. D. Robyr, A. P. Wolffe, and W. Wahli. (2000). Nuclear hormone receptor coregulators in action: Diversity for shared tasks. Mol. Endocrinol 14:329–347.

    Google Scholar 

  68. L. P. Freedman (1999). Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97:5–8.

    Google Scholar 

  69. S. Yeh and C. Chang (1996). Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl. Acad. Sci. U.S.A. 93:5518–5521.

    Google Scholar 

  70. P. Alen, F. Claessens, E. Schoenmakers, J. V. Swinnen, G. Verhoeven, W. Rombauts, and B. Peeters (1999). Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1α with multiple steroid receptors and identification of an internally deleted ELE1β isoform. Mol. Endocrinol. 13:117–128.

    Google Scholar 

  71. T. Gao, K. Brantley, E. Bolu, and M. J. McPhaul (1999). RFG (ARA70, ELE1) interacts with the human androgen receptor in a ligand-dependent fashion, but functions only weakly as a coactivator in cotransfection assays. Mol. Endocrinol. 13:1645–1656.

    Google Scholar 

  72. P.-W. Hsiao, D.-L. Lin, R. Nakao, and C. Chang (1999). The linkage of Kennedy's neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J. Biol. Chem. 274:20229–20234.

    Google Scholar 

  73. V. Boonyaratanakornkit, V. Melvin, P. Prendergast, M. Altmann, L. Ronfani, M. E. Bianchi, L. Taraseviciene, S. K. Nordeen, E. A. Allegretto, and D. P. Edwards (1998). Highmobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 18:4471–4487.

    Google Scholar 

  74. V. S. Melvin and D. P. Edwards (1999). Coregulatory proteins in steroid hormone receptor action: The role of chromatin high mobility group proteins HMG-1 and-2. Steroids 64:576–586.

    Google Scholar 

  75. J. E. Brownell and C. D. Allis (1996). Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Gen. Dev. 6:176–184.

    Google Scholar 

  76. M. J. Pazen and J. T. Kadonaga (1997). What's up and down with histone deacetylation and transcription? Cell 69: 325–328.

    Google Scholar 

  77. A. P. Wolffe and D. Pruss (1996). Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell 84:817–919.

    Google Scholar 

  78. R. P. S. Kwok, J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bächinger, R. G. Brennan, S. G. E. Roberts, M. R. Green, and R. H. Goodman (1994). Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–229.

    Google Scholar 

  79. X-J. Yang, V. V. Ogryzko, J.-I Nishikawa, B. H. Howard, and Y. Nakatani (1996). A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.

    Google Scholar 

  80. B. Hanstein, R. Eckner, J. Direnzo, S. Halachmi, H. Liu, B. Searcy, R. Kurokawa, and M. Brown (1996). P300 is a component of an estrogen receptor coactivator complex. Proc. Natl. Acad. Sci. U.S.A. 93:11540–11545.

    Google Scholar 

  81. J. C. G. Blanco, S. Minucci, J. Lu, X.-J. Yang, K. K. Walker, H. Chen, R. M. Evans, Y. Nakatani, and K. Ozato (1998). The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev. 12:1638–1651.

    Google Scholar 

  82. E. Korzus, J. Torchia, D. W. Rose, L. Xu, R. Kurokawa, E. M. McInerney, T.-M. Mullen, C. K. Glass, and M. G. Rosenfeld (1998). Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707.

    Google Scholar 

  83. H. Chen, R. J. Lin, W. Xie, D. Wilpitz, and R. M. Evans (1999). Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98:675–686.

    Google Scholar 

  84. W. L. Kraus and J. T. Kadonaga (1998). P300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiatio and reinitiation. Genes Dev. 12:331–342.

    Google Scholar 

  85. W. Gu and R. G. Roeder (1997). Activation of p53 sequencespecific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.

    Google Scholar 

  86. N. Munshi, M. Merika, J. Yie, K. Senger, G. Chen, and D. Tharios (1998). Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol. Cell 2:457–467.

    Google Scholar 

  87. Q. Li, A. Imhof, T. N. Collingwood, F. D. Urnov, and A. P. Wolffe (1999). P300 stimulates transcription initiated by ligand-bound thyroid hormone receptor at a step subsequent to chromatin disruption. EMBO J. 18:5634–5652.

    Google Scholar 

  88. B. L. Kee, J. Arias, and M. R. Montminy (1996). Adaptormediated recruitment of RNA polymerase II to a signaldependent activator. J. Biol. Chem. 271:2373–2375.

    Google Scholar 

  89. V. V. Ogryzko, T. Kotani, X. Zhang, R. L. Schiltz, T. Howard, X.-J. Yang, B. H. Howard, J. Qin, and Y. Nakatani (1998). Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44.

    Google Scholar 

  90. Z. Liu, J. Wong, S. Y. Tsai, M.-J. Tsai, and B. W. O'Malley (1999). Steroid receptor coactivator-1 (SRC-1) enhances ligand-dependent and receptor-dependent cell free transcriptionof chromatin. Proc. Natl. Acad. Sci. U.S.A. 96:9485–9490.

    Google Scholar 

  91. A. M. Brzozowski, A. C. W. Pike, Z. Dauter, R. E. Hubbard, T. Bonn, O. Engström, L.Öhman, G. L. Greene, J-Å Gustafsson, and M. Cariquist (1997). Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–757.

    Google Scholar 

  92. C. L. Smith, Z. Nawaz, and B. W. O'Malley (1997). Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol. Endocrinol. 11:657–666.

    Google Scholar 

  93. T. A. Jackson, J. K. Richer, D. L. Bain, G. S. Takimoto, L. Tung, and K. B. Horwitz (1997). The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol. Endocrinol. 11:693–705.

    Google Scholar 

  94. B. L. Wagner, J. D. Norris, T. A. Knotts, N. L. Weigel, and D. P. McDonnell (1998). The nuclear corepressors NcoR and SMART are key regulators of both ligand and 8-bromocAMP dependent transcriptional activity of the human progesterone receptor. Mol. Cell. Biol. 18:1369–1378.

    Google Scholar 

  95. A. P. Wolffe (1997). Sinful repression. Nature 387:16–17.

    Google Scholar 

  96. M. M. Montano, K. Ekena, R. Delage-Mourroux, W. Chang, P. Martini, and B. S. Katzenellenbogen (1999). An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc. Natl. Acad. Sci. U.S.A. 96:6947–6952.

    Google Scholar 

  97. R. M. Lavinsky, K. Jepsen, T. Heinzel. J. Torchia, T-M. Mullen, R. Schiff, A. L. Del-Rio, M. Ricote, S. Ngo, J. Gensch, S. G. Hilsenbeck, C. K. Osborne, C. K. Glass, and M. G. Rosenfeld (1998). Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl. Acad. Sci. U.S.A. 95:2920–2925.

    Google Scholar 

  98. S. Misiti, L. Schomburg, P. M. Yen, and W. W. Chin (1998). Expression and hormonal regulation of coactivator and corepressor genes. Endocrinology 139:2493–2500.

    Google Scholar 

  99. S. Misiti, N. Koibuchi, M. Bei, A. Farsetti, and W. W. Chin (1999). Expression of steroid receptor coactivator-1 mRNA in the developing mouse embryo: A possible role in olfactory epithelium development. Endocrinology 140:1957–1960.

    Google Scholar 

  100. J. Xu, L. Liao, G. Ning, H. Yoshida-Komiya, C. Deng, and B. W. O'Malley (2000). The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci., U.S.A 97:6379–6384.

    Google Scholar 

  101. W.-S. Shin, J. DiRenzo, J. A. DeCaprio, R. J. Santen, M. Brown, and M.-H. Jeng (1999). Segregation of steroid receptor coactivator-1 from steroid receptors in mammary epithelium. Proc. Natl. Acad. Sci. U.S.A. 96:208–213.

    Google Scholar 

  102. M. Carapeti, R. C. T. Aguiar, J. M. Goldman, and N. C. P. Cross (1998). A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91:3127–3133.

    Google Scholar 

  103. S. Bautista, H. Vallès, R. L. Walker, S. Anzick, R. Zeillinger, P. Meltzer, and C. Theillet (1998). In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin. Caner Res. 4:2925–2929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, D.P. The Role of Coactivators and Corepressors in the Biology and Mechanism of Action of Steroid Hormone Receptors. J Mammary Gland Biol Neoplasia 5, 307–324 (2000). https://doi.org/10.1023/A:1009503029176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009503029176

Navigation