Skip to main content
Log in

Rapid Growth Paths in Multivalued Dynamical Systems Generated by Homogeneous Convex Stochastic Operators

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

The paper examines dynamical systems generated by convex homogeneous multivalued operators in spaces of random vectors. The primary goal is to investigate the growth rates of random trajectories of these dynamical systems. Existence and characterization theorems for ‘rapid’ trajectories, growing faster in a certain sense than others, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, A.: The General Topology of Dynamical Systems, Grad. Stud. Math. Vol. 1, Amer. Math. Soc., Providence, RI, 1993.

    Google Scholar 

  2. Antipin, A. S. and Flåm, S. D.: Equilibrium programming using proximal-like algorithms, Math. Programming 78 (1997), 29–41.

    Google Scholar 

  3. Arkin, V. I. and Evstigneev, I. V.: Stochastic Models of Control and Economic Dynamics, Academic Press, London, 1987.

    Google Scholar 

  4. Arnold, L., Demetrius, L. and Gundlach, M.: Evolutionary formalism for products of positive random matrices, Ann. Appl. Probab. 4 (1994), 859–901.

    Google Scholar 

  5. Aubin, J.-P. and Frankowska, H.: Set-Valued Analysis, Birkhäuser, Boston, 1990.

    Google Scholar 

  6. Belenky, V. Z.: A stochastic stationary model for optimal control of an economy, in: N. Ya. Petrakov et al. (eds), Studies in Stochastic Control Theory and Mathematical Economics, CEMI, Moscow, 1981, pp. 3–24 (in Russian).

    Google Scholar 

  7. Castaing, C. and Valadier, M.: Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  8. Dubovitskii, A. Ya. and Milyutin, A. A.: Necessary conditions for a weak extremum in optimal control problems with mixed inequality constraints, Comput. Math. Math. Phys. 8 (1968), 24–98.

    Google Scholar 

  9. Dynkin, E. B.: Some probability models for a developing economy, Soviet Math. Dokl. 12 (1971), 1422–1425.

    Google Scholar 

  10. Evstigneev, I. V.: Optimal economic planning taking account of stationary random factors, Soviet Math. Dokl. 13 (1972), 1357–1359.

    Google Scholar 

  11. Evstigneev, I. V.: Positive matrix-valued cocycles over dynamical systems, Uspekhi Mat. Nauk 29 (1974), 219–220 (in Russian).

    Google Scholar 

  12. Evstigneev, I. V.: Homogeneous convex models in the theory of controlled random processes, Soviet Math. Dokl. 22 (1980), 108–111.

    Google Scholar 

  13. Evstigneev, I. V. and Kabanov, Yu. M.: Probabilistic modification of the von Neumann—Gale model, Russian Math. Surveys 35 (1980), 185–186.

    Google Scholar 

  14. Evstigneev, I. V.: A non-stationary stochastic analog of the von Neumann—Gale model of a developing economy: A theorem on a characteristic, Optimizatsiya 27 (1981), 34–43 (in Russian).

    Google Scholar 

  15. Flåm, S. D.: Nonanticipativity in stochastic programming, J. Optim. Theory Appl. 46 (1985), 23–30.

    Google Scholar 

  16. Furstenberg, H. and Kesten, H.: Products of random matrices, Ann. Math. Statist. 31 (1960), 457–469.

    Google Scholar 

  17. Gale, D.: A closed linear model of production, in: H. W. Kuhn et al. (eds), Linear Inequalities and Related Systems, Ann. of Math. Stud. 38, Princeton Univ. Press, Princeton, 1956, pp. 285–303.

    Google Scholar 

  18. Gale, D.: A mathematical theory of optimal economic development, Bull. Amer. Math. Soc. 74 (1968), 207–223.

    Google Scholar 

  19. Hurwicz, L.: Programming in linear spaces, in: K. J. Arrow et al. (eds), Studies in Linear and Nonlinear Programming, Stanford University Press, Stanford, 1958, pp. 38–102.

    Google Scholar 

  20. Kesten, H. and Stigum, B. P.: Balanced growth under uncertainty in decomposable economies, in: M. S. Balch et al. (eds), Essays in Economic Behavior under Uncertainty, North-Holland, N.Y., 1974, pp. 339–381.

    Google Scholar 

  21. Levin, V. L.: Convex Analysis in Spaces of Measurable Functions, Nauka, Moscow, 1985 (in Russian).

    Google Scholar 

  22. Levin, V. L.: A superlinear multifunction arising in connection with mass transfer problems, Set-Valued Anal. 4 (1996), 41–65.

    Google Scholar 

  23. Luo, Z. Q., Pang, J.-S. and Ralph, D.: Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  24. Makarov, V. L. and Rubinov, A. M.: Mathematical Theory of Economic Dynamics and Equilibria, Springer-Verlag, New York, 1977.

    Google Scholar 

  25. Makarov, V. L., Rubinov, A. M. and Levin, M. I.: Mathematical Economic Theory: Pure and Mixed Types of Economic Mechanisms, Adv. Textbooks Econom. 33, Elsevier, Amsterdam, New York, 1995.

    Google Scholar 

  26. Neveu, J.: Mathematical Foundations of the Calculus of Probability Theory, Holden Day, San Francisco, 1965.

    Google Scholar 

  27. Nikaido, H.: Convex Structures and Economic Theory, Academic Press, New York, 1968.

    Google Scholar 

  28. Presman, E. L. and Slastnikov, A. D.: An approach to the definition of a growth rate in stochastic von Neumann—Gale models, in: V. I. Arkin et al. (eds), Models and Methods of Stochastic Optimization, CEMI, Moscow, 1983, pp. 123–152 (in Russian).

    Google Scholar 

  29. Radner, R.: Balanced stochastic growth at the maximum rate, in: Contributions to the von Neumann Growth Model (Proc. Conf., Inst. Adv. Studies, Vienna, 1970), Z. Nationalökonomie, Suppl. No. 1, 1971, pp. 39–53.

  30. Radner, R.: Optimal stationary consumption with stochastic production and resources, J. Econom. Theory 6 (1973), 68–90.

    Google Scholar 

  31. Rockafellar, R. T.: Monotone Processes of Convex and Concave Type, Mem. Amer. Math. Soc. 77, Amer. Math. Soc., Providence, RI, 1967.

    Google Scholar 

  32. Rockafellar, R. T.: Integrals which are convex functionals, Pacific J. Math. 24 (1968), 525–539.

    Google Scholar 

  33. Rockafellar, R. T. and Wets, R. J.-B.: Stochastic convex programming: Kuhn-Tucker conditions, J. Math. Econom. 2 (1975), 349–370.

    Google Scholar 

  34. von Neumann, J.: Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, in: Ergebnisse eines Mathematischen Kolloquiums 8, 1935–1936, Franz-Deuticke, Leipzig und Wien, 1937, pp. 73–83. (An English translation: A model of general economic equilibrium, Rev. Econom. Studies 13 (1945–1946), 1–9.)

    Google Scholar 

  35. Yosida, K. and Hewitt, E.: Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46–66.

    Google Scholar 

  36. Zaharevič, M. I.: Ergodic properties of nonlinear mappings connected with models of economic dynamics, Soviet. Math. Dokl. 24 (1981), 430–433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evstigneev, I.V., Flå m, S.D. Rapid Growth Paths in Multivalued Dynamical Systems Generated by Homogeneous Convex Stochastic Operators. Set-Valued Analysis 6, 61–81 (1998). https://doi.org/10.1023/A:1008606332037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008606332037

Navigation