Skip to main content
Log in

Conformational flexibility in calcitonin: The dynamic properties of human and salmon calcitonin in solution

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We have studied the dynamic properties of human (h) and salmon (s) calcitonin (CT) in solution. For both hormones, distance geometry in torsion-angle space has been used to generate three-dimensional structures consistent with NMR data obtained in sodium dodecyl sulfate micelles. For sCT and hCT we used, respectively, 356 and 275 interproton distances together with hydrogen-bonds as restraints. To better characterize their flexibility and dynamic properties two fully unrestrained 1100-ps molecular dynamics (MD) simulations in methanol were performed on the lowest-energy structures of both hormones. Statistical analyses of average geometric parameters and of their fluctuations performed in the last 1000 ps of the MD run show typical helical values for residues 9–19 of sCT during the whole trajectory. For hCT a shorter helix was observed involving residues 13–21, with a constant helical region in the range 13–19. Angular order parameters S(φ) and S(ψ) indicate that hCT exhibits a higher flexibility, distributed along the whole chain, including the helix, while the only flexible amino acid residues in sCT connect three well-defined domains. Finally, our study shows that simulated annealing in torsion-angle space can efficiently be extended to NMR-based three-dimensional structure calculations of helical polypeptides. Furthermore, provided that a sufficient number of NMR restraints describes the system, the method allows the detection of equilibria in solution. This identification occurs through the generation of 'spurious' high-energy structures, which, for right-handed α-helices, are likely to be represented by left-handed α-helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adzhubei, A.A. and Sternberg, M.J.E. (1993) J. Mol. Biol., 229, 472–493.

    Google Scholar 

  • Amodeo, P., Motta, A., Tancredi, T., Salvadori, S., Tomatis, R., Picone, D., Saviano, G. and Temussi, P.A. (1992) Pept. Res., 5, 48–55.

    Google Scholar 

  • Amodeo, P., Castiglione Morelli, M.A. and Motta, A. (1994) Biochemistry, 33, 10754–10762.

    Google Scholar 

  • Arvinte, T. and Drake, A.F. (1993) J. Biol. Chem., 268, 6408–6414.

    Google Scholar 

  • Austin, L.A. and Heath III, H. (1981) N. Engl. J. Med., 304, 269–278.

    Google Scholar 

  • Azria, M. (1989) The Calcitonins: Physiology and Pharmacology, Karger, Basel, Switzerland.

    Google Scholar 

  • Bax, A. and Davis, D.G. (1985) J. Magn. Reson., 65, 355–366.

    Google Scholar 

  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.M. (1984) J. Chem. Phys., 81, 3684–3690.

    Google Scholar 

  • Braun, W. and Gō, N. (1985) J. Mol. Biol., 186, 611–626.

    Google Scholar 

  • Braunschweiler, L. and Ernst, R.R. (1983) J. Magn. Reson., 53, 521–528.

    Google Scholar 

  • Castiglione Morelli, M.A., Pastore, A. and Motta, A. (1992) J. Biomol. NMR, 2, 335–348.

    Google Scholar 

  • Dayhoff, M.O. (1978) Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 3, National Biomedical Research Foundation, Silver Spring, MD, USA, p. 149.

    Google Scholar 

  • Doi, M., Kobayashi, Y., Kyogoku, Y., Takimoto, M. and Goda, K. (1990) In Peptides: Chemistry, Structure and Biology, Proceedings of the Eleventh American Peptide Symposium (Rivier, J.E. and Marshall, R., Eds), ESCOM, Leiden, The Netherlands, pp. 165–167.

    Google Scholar 

  • Drake, A.F., Siligardi, G. and Gibbons, W.A. (1988) Biophys. Chem., 31, 143–146.

    Google Scholar 

  • Drobny, G., Pines, A., Sinton, S., Weitekamp, D. and Wemmer, D. (1979) Faraday Symp. Chem. Soc., 13, 49–55.

    Google Scholar 

  • Epand, R.M., Epand, R.F., Orlowski, R.C., Schlueter, R.J., Boni, L.T. and Hui, S.W. (1983) Biochemistry, 22, 5074–5084.

    Google Scholar 

  • Epand, R.M., Epand, R.F., Orlowski, R.C., Seyler, J.K. and Colescott, R.L. (1986) Biochemistry, 25, 1964–1968.

    Google Scholar 

  • Epand, R.M., Epand, R.F. and Orlowski, R.C. (1988) Biochem. Biophys. Res. Commun., 152, 203–207.

    Google Scholar 

  • Green III, F.R., Lynch, B. and Kaiser, E.T. (1987) Proc. Natl. Acad. Sci. USA, 84, 8340–8344.

    Google Scholar 

  • Griesinger, C., Otting, G., Wüthrich, K. and Ernst, R.R. (1988) J. Am. Chem. Soc., 110, 7870–7872.

    Google Scholar 

  • Güntert, P., Braun, W., Billeter, M. and Wüthrich, K. (1989) J. Am. Chem. Soc., 111, 3997–4004.

    Google Scholar 

  • Güntert, P. and Wüthrich, K. (1991) J. Biomol. NMR, 1, 447–456.

    Google Scholar 

  • Güntert, P., Braun, W. and Wüthrich, K. (1991) J. Mol. Biol., 217, 517–530.

    Google Scholar 

  • Güntert, P. and Mumenthaler, C. (1997) DYANA Manual, version 1.4, Institut für Molekularbiologie und Biophysik, ETH, CH-8093 Zürich, Switzerland.

    Google Scholar 

  • Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997) J. Mol. Biol., 273, 283–288.

    Google Scholar 

  • Hyberts, S.G., Goldberg, M.S., Havel, T.F. and Wagner, G. (1992) Protein Sci., 1, 736–751.

    Google Scholar 

  • Jardetzky, O. (1980) Biochim. Biophys. Acta, 621, 227–232.

    Google Scholar 

  • Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Jorgensen, W.L. and Tirado-Rives, J. (1988) J. Am. Chem. Soc., 110, 1657–1664.

    Google Scholar 

  • Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graph., 14, 51–55.

    Google Scholar 

  • Kovacs, H., Mark, A., Johansson, J. and van Gunsteren, W. (1995) J. Mol. Biol., 247, 808–822.

    Google Scholar 

  • Levy, F., Muff, R., Dotti-Sigrist, S., Dambacher, M.A. and Fisher, J.A. (1988) J. Clin. Endocrinol. Metabol., 67, 541–548.

    Google Scholar 

  • McKnight, C.J., Matsudaira, P.T. and Kim, P.S. (1997) Nat. Struct. Biol., 4, 180–185.

    Google Scholar 

  • Meadows, R.P., Nikonowicz, E.P., Jones, C.R., Bastian, J.W. and Gorenstein, D.G. (1991) Biochemistry, 30, 1247–1254.

    Google Scholar 

  • Meyer, J.-P., Pelton, J.T., Hoflack, J. and Saudek, V. (1991) Biopolymers, 31, 233–241.

    Google Scholar 

  • Moe, G.R. and Kaiser, E.T. (1985) Biochemistry, 24, 1971–1975.

    Google Scholar 

  • Motta, A., Picone, D., Tancredi, T. and Temussi, P.A. (1987) J. Magn. Reson., 75, 364–370.

    Google Scholar 

  • Motta, A., Castiglione Morelli, M.A., Goud, N.A. and Temussi, P.A. (1989) Biochemistry, 28, 7996–8002.

    Google Scholar 

  • Motta, A., Temussi, P.A., Wünsch, E. and Bovermann, G. (1991a) Biochemistry, 30, 2364–2371.

    Google Scholar 

  • Motta, A., Pastore, A., Goud, N.A. and Castiglione Morelli, M.A. (1991b) Biochemistry, 30, 10444–10450.

    Google Scholar 

  • Motta, A., Andreotti, G., Amodeo, P., Strazzullo, G. and Castiglione Morelli, M.A. (1998) Proteins, 32, 314–323.

    Google Scholar 

  • Neuhaus, D., Wagner, G., Vasák, M., Kägi, J.H.R. and Wüthrich, K. (1985) Eur. J. Biochem., 151, 257–273.

    Google Scholar 

  • Neidig, K.P., Geyer, M., Goerler, A., Antz, C., Saffrich, R., Beneicke, W. and Kalbitzer, H.R. (1995) J. Biomol. NMR, 6, 255–270.

    Google Scholar 

  • Pastore, A., Atkinson, R.A., Saudek, A. and Williams, R.J.P. (1991) Proteins, 10, 22–32.

    Google Scholar 

  • Piantini, U., Sørensen, O.W. and Ernst, R.R. (1982) J. Am. Chem. Soc., 104, 6800–6801.

    Google Scholar 

  • Piotto, M., Saudek, V. and Sklenar, V. (1992) J. Biomol. NMR, 2, 661–666.

    Google Scholar 

  • Ramachandran, G.N., Venkatachalam, C.M. and Krimm, S. (1966) Biophys. J., 6, 849–872.

    Google Scholar 

  • Ryckaert, J.P., Ciccotti, G. and Berendsen, H.J.C. (1977) J. Comput. Phys., 23, 327–341.

    Google Scholar 

  • Stein, E.G., Rice, L.M. and Brünger, A.T. (1997) J. Magn. Reson., 124, 154–164.

    Google Scholar 

  • Wagner, G., Braun, W., Havel, T.F., Schaumann, T., Gō, N. and Wüthrich, K. (1987) J. Mol. Biol., 196, 611–639.

    Google Scholar 

  • Weiner, P.K. and Kollman, P.A. (1981) J. Comput Chem., 2, 287–303.

    Google Scholar 

  • Weiner, S.J., Kollman, P.A., Case, D.A., Chandra Singh, U., Ghio, C., Alagona, G., Profeta, S. and Weiner, P.K. (1984) J. Am. Chem. Soc., 106, 765–784.

    Google Scholar 

  • Weiner, P.K., Kollman, P.A., Nguyen, D.T. and Case, D.A. (1986) J. Comput. Chem., 7, 230–252.

    Google Scholar 

  • Wüthrich, K., Billeter, M. and Braun, W. (1983) J. Mol. Biol., 169, 949–961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amodeo, P., Motta, A., Strazzullo, G. et al. Conformational flexibility in calcitonin: The dynamic properties of human and salmon calcitonin in solution. J Biomol NMR 13, 161–174 (1999). https://doi.org/10.1023/A:1008365322148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008365322148

Navigation