Skip to main content
Log in

Abstract

The celebrated minimum inertia line problem is reconsidered: a line is to be fitted to a planar cloud of points so that the sum of squared distances of all points to the line becomes minimal. The classical algebraic solution based on the tensor of inertia is complemented by a closed form trigonometric solution allowing various generalizations including the fit of elastic polygons. Proper polygons will be fitted numerically with non-closed partial solutions being reduced to the lowest dimension possible. This is complemented by segmentation heuristics for the measurement cloud.

The approach allows to solve the robot localization problem with high accuracy for position and orientation to be inferred from distance measurements in a known polygonal environment. The essential feature of the current approach is to fit the polygonal geometry as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaike, H.: A new look at the statistical model identification, IEEE Trans. Automat. Control 19(1974), 716-723.

    Google Scholar 

  2. Arras, K. O., Vestli, S. J., and Tschichold-Gürmann, N. N.: Echtzeitfähige Merkmalsextraktion und Situationsinterpretation von Laserscannerdaten, in: Proc. Fachgespräch Autonome Mobile Systeme1996, pp. 57-66.

  3. Beveridge, J. R. and Riseman, M.: How easy is matching 2D line models using local search?, IEEE Trans. Pattern Anal. Machine Intelligence 19(1997), 564-579.

    Google Scholar 

  4. Cox, I. J.: Blanche: position estimation for an autonomous robot vehicle, in: I. J. Cox and G. T. Wilfong (eds), Autonomous Robot Vehicles, Springer, New York, 1990, pp. 221-228.

    Google Scholar 

  5. Dudek, G., Jenkin, M., Milios, E., and Wilkes, D.: Map validation and robot self-location in a graph-like world, Robotics Autonomous Systems 22(1997), 159-178.

    Google Scholar 

  6. Faugeras, O.: Three-Dimensional Computer Vision, MIT Press, Cambridge, MA, 1993.

    Google Scholar 

  7. Gonzalez, R. and Wintz, P.: Discrete Signal Processing, 2nd edn, Addison-Wesley, Reading, MA, 1987.

    Google Scholar 

  8. Guibas, L. J., Motwani, R., and Raghavan, P.: The robot localization problem, Preprint, 1995.

  9. Hoover, A.: An experimental comparison of range image segmentation algorithms, IEEE Trans. Pattern Anal. Machine Intelligence 18(1996), 673-689.

    Google Scholar 

  10. Jain, R., Kasturi, R., and Schunk, B. G.: Machine Vision, McGraw-Hill, New York, 1995.

    Google Scholar 

  11. Kämpke, T.: Convex translation estimation, J. Intelligent Robotic Systems 22(1998), 287-300.

    Google Scholar 

  12. Kämpke, T.: Efficient quantization algorithms for discrete functions, in progress.

  13. Kämpke, T. and Kober, R.: Discrete signal quantization, Pattern Recognition 32(1999), 619-634.

    Google Scholar 

  14. Kämpke, T. and Kober, R.: Nonparametric image segmentation, Pattern Anal. Appl. 1(1998), 145-154.

    Google Scholar 

  15. King, R. F.: An improved pegasus method for root finding, BIT 13(1973), 423-427.

    Google Scholar 

  16. Lu, F. and Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans, J. Intelligent Robotic Systems 18(1997), 249-275.

    Google Scholar 

  17. Nickerson, S. B., Jasiobedzki, P., Wilkes, D., Jenkin, M., Milios, E., Tsotsos, J., Jepson, A., and Bains, O. N.: An autonomous robot for known industrial environments, Robotics Autonom. Systems 23(1998), 83-104.

    Google Scholar 

  18. Preparata, F. P. and Shamos, M. I.: Computational Geometry, Springer, New York, 2nd printing, 1988.

    Google Scholar 

  19. Radermacher, F. J.: Cognition in systems, Cybernetics and Systems 27(1996), 1-41.

    Google Scholar 

  20. Stewart, C. V.: Bias in robust estimation caused by discontinuities and multiple structures, IEEE Trans. Pattern Anal. Machine Intelligence 19(1997), 818-833.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kämpke, T., Strobel, M. Polygonal Model Fitting. Journal of Intelligent and Robotic Systems 30, 279–310 (2001). https://doi.org/10.1023/A:1008185412543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008185412543

Navigation