Skip to main content
Log in

Absorption of glucose, amino acids, and dipeptides by the intestines of Atlantic salmon (Salmo salar L.)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Rates of glucose, amino acid and dipeptide absorption by the intestine of Atlantic salmon (Salmo salar L.) were measured in vitro at 10 °C as functions of concentration and region using intact tissues (everted sleeve method). Salmon (weight range 300–1300 g) fed a commercial, extruded salmon feed, were kept at 12–13 °C in freshwater. Maximum rates (V max) of glucose and dipeptide transport were low compared to most amino acid V max values. There was a declining proximal-to-distal gradient of absorption along the post-gastric intestinal tract. A saturable component of absorption was not evident for proline and glycyl-proline in the distal intestine, and glycyl-sarcosine in any region. `Apparent diffusion', which may include low affinity, high capacity carrier systems and carrier-independent influx, appears to account for the majority of total uptake at higher concentrations of amino acids and dipeptides. There was competition between the dipeptides for transporter sites in the pyloric ceca and mid intestine, suggesting a common carrier. There was also indication of hydrolysis of these dipeptides by brush border membrane enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adibi, S.A. 1997. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113: 332-340.

    Google Scholar 

  • Anderson, J.S., Lall, S.P., Anderson, D.M. and McNiven, M.A. 1995. Availability of amino acids from various fish meals fed to Atlantic salmon (Salmo salar). Aquaculture 138: 291-301.

    Google Scholar 

  • Balocco, C., Bogé, G. and Roche, H. 1993. Neutral amino acid transport by marine fish intestine: role of the side chain. J. Comp. Physiol. B 163: 340-347.

    Google Scholar 

  • Bogé, G., Rigal, A. and Peres, G. 1979a. A study of intestinal absorption in vivo and in vitro of different concentrations of glycine by the rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol. 62A: 831-836.

    Google Scholar 

  • Bogé, G., Rigal, A. and Peres G. 1979b. A study of energized transport mechanisms of glycine absorption by the rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol. 64A: 537-541.

    Google Scholar 

  • Bogé, G., Rigal, A. and Peres, G. 1981. Rates of in vivo intestinal absorption of glycine and glycylglycine by rainbow trout (Salmo gairdneri R.). Comp. Biochem. Physiol. 69A: 455-459.

    Google Scholar 

  • Buddington, R.K. and Diamond, J.M. 1987. Pyloric ceca of fish: a 'new' absorptive organ. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G65-G76.

    Google Scholar 

  • Buddington, R.K., Chen, J.W. and Diamond, J.M. 1987. Genetic and phenotypic adaption of intestinal nutrient transport to diet in fish. J. Physiol. 393: 261-281.

    Google Scholar 

  • Buddington, R.K., Chen, J.W. and Diamond, J.M. 1991. Dietary regulation of intestinal brush-border sugar and amino acid transport in carnivores. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 30): R793-R801.

    Google Scholar 

  • Buddington, R.K., Krogdahl, Å. and Bakke-McKellep, A.M. 1997. The intestines of carnivorous fish: structure and functions and the relations with diet. Acta Physiol. Scand. 161 (Suppl. 638): 67-80.

    Google Scholar 

  • Christensen, H.N. 1990. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol. Rev. 70: 43-77.

    Google Scholar 

  • Coady, M.J., Pajor, A.M. and Wright, E.M. 1990. Sequence homologies among intestinal and renal NaC/glucose cotransporters. Am. J. Physiol. 259 (Cell Physiol. 28): C605-C610.

    Google Scholar 

  • Collie, N.L. 1985. Intestinal nutrient transport in coho salmon (Oncorhynchus kisutch) and the effects of development, starvation, and seawater adaption. J. Comp. Physiol. B 156: 163-174.

    Google Scholar 

  • Collie, N.L. and Ferraris, R.P. 1995. Nutrient fluxes and regulation in fish intestine. In: Metabolic Biochemistry. pp. 221-239. Edited by P.W. Hochachka and T.P. Mommsen. Elsevier Science B.V., Amsterdam.

    Google Scholar 

  • Ferraris, R.P. and Ahearn, G.A. 1983. Intestinal glucose transport in carnivorous and herbivorous marine fishes. J. Comp. Physiol. B 152: 79-90.

    Google Scholar 

  • Ferraris, R.P. and Ahearn, G.A. 1984. Sugar and amino acid transport in fish intestine. Comp. Biochem. Physiol. 77A: 397-413.

    Google Scholar 

  • Ferraris, R.P. and Diamond, J.M. 1986. A method for measuring apical glucose transporter site density in intact intestinal mucosa by means of phlorizin binding. J. Membr. Biol. 94: 65-75.

    Google Scholar 

  • Ferraris, R.P., Lee, P.P. and Diamond, J.M. 1989. Origin of regional and species differences in intestinal glucose uptake. Am. J. Physiol. 257 (Gastrointest. Liver Physiol. 20): G689-G697.

    Google Scholar 

  • Ferraris, R.P. 1994. Regulation of intestinal nutrient transport. In: Physiology of the Gastrointestinal Tract, Third Edition. pp. 1773-1794. Edited by L.R. Johnson. Raven Press, New York.

    Google Scholar 

  • Ganapathy, V., Brandsch, M. and Leibach, F.H. 1994. Intestinal transport of amino acids and peptides. In: Physiology of the Gastrointestinal Tract, third edition. pp. 1773-1794. Edited by L.R. Johnson. Raven Press, New York.

    Google Scholar 

  • Hemre, G.I., Sandnes, K., Lie, Ø. Torrissen, O. and Waagbø, R. 1995. Carbohydrate nutrition in Atlantic salmon, Salmo salar L. growth and feed utilization. Aquacult. Res. 26: 149-154.

    Google Scholar 

  • Ingh, T.S.G.A.M. van den, Krogdahl, Å., Olli, J., Hendricks, H.G.C.J.M. and Koninkx, J.F.J.G. 1991. Effects of soybeancontaining diets on the proximal and distal intestine in Atlantic salmon (Salmo salar): a morphological study. Aquaculture 94: 297-305.

    Google Scholar 

  • Ingham, L. and Arme, J.C. 1977. Intestinal absorption of amino acids by rainbow trout Salmo gairdneri (Richardson). J. Comp. Physiol. 117: 323-334.

    Google Scholar 

  • Karasov, W.H. and Diamond, J.M. 1983. A simple method for measuring intestinal solute uptake in vitro. J. Comp. Physiol. 152: 105-116.

    Google Scholar 

  • Krogdahl, Å., Nordrum, S., Sørensen, M., Brudeseth, L. and Røsjø, C. 1999. Effects of diet composition on apparent nutrient absorption along the intestinal tract and of subsequent fasting on mucosal disaccharidase activities and plasma nutrient concentration in Atlantic salmon Salmo salar L. Aquacult. Nutr. 5: 121-133.

    Google Scholar 

  • Maffia, M., Verri, T., Danieli, A., Thamotharan, M., Pastore, M., Ahearn, G.A. and Storelli, C. 1997. HC-glycyl-L-proline cotransport in brush-border membrane vesicles of eel (Anguilla anguilla) intestine. Am. J. Physiol. 272 (Regulatory Integrative Comp. Physiol. 41): R217-R225.

    Google Scholar 

  • Munilla-Morán, R. and Stark, J.R. 1990. Metabolism in marine flatfish-VI. Effect of nutritional state on digestion in turbot, Scophthalmus maximus (L.). Comp. Biochem. Physiol. 95B: 625-634.

    Google Scholar 

  • Reshkin, S.J. and Ahearn, G.A. 1991. Intestinal glycyl-Lphenylalanine and L-phenylalanine transport in a euryhaline teleost. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 29): R563-R569.

    Google Scholar 

  • Sabapathy, U. and Teo, L.H. 1993. A quantitative study of some digestive enzymes in the rabbitfish, Siganus canaliculatus and the sea bass, Lates calcarifer. J. Fish Biol. 42: 595-602.

    Google Scholar 

  • Schep, L.J., Tucker, I.G., Young, G. and Butt, A.G. 1997. Regional permeability differences between the proximal and distal portions of the isolated salmonid posterior intestine. J. Comp. Physiol. 167: 370-377.

    Google Scholar 

  • Sire, M.F. and Vernier, J.-M. 1992. Intestinal absorption of protein in teleost fish. Comp. Biochem. Physiol. 103A: 771-781.

    Google Scholar 

  • Smith, B.W. and Lovell, R.T. 1973. Determination of apparent protein digestibility in feeds for channel catfish. Trans. Am. Fish. Soc. 4: 831-835.

    Google Scholar 

  • Storelli, C., Vilella, S. and Cassano, G. 1986. Na-dependent Dglucose and L-alanine transport in eel intestinal brush border membrane vesicles. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R463-R469.

    Google Scholar 

  • Storelli, C., Vilella, S., Romano, M.P., Maffia, M. and Cassano, G. 1989. Brush-border amino acid transport mechanisms in carnivorous eel intestine. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R506-R510.

    Google Scholar 

  • Thamotharan, M., Gomme, J., Zonno, V., Maffia, M., Storelli, C. and Ahearn, G.A. 1996. Electrogenic, proton-coupled, intestinal dipeptide transport in herbivorous and carnivorous teleosts. Am. J. Physiol. 270 (Regulatory Integrative Comp. Physiol. 39): R939-R947.

    Google Scholar 

  • Vilella, S., Ahearn, G.A., Cassano, G., Maffia, M. and Storelli, C. 1990. Lysine transport by brush border membrane vesicles of eel intestine: interaction with neutral amino acids. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 28): R1181-R1188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakke-McKellep, A., Nordrum, S., Krogdahl, Å. et al. Absorption of glucose, amino acids, and dipeptides by the intestines of Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry 22, 33–44 (2000). https://doi.org/10.1023/A:1007872929847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007872929847

Navigation