Skip to main content
Log in

First Exit Time from a Bounded Interval for a Certain Class of Additive Functionals of Brownian Motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let (B t) t≥0 be standard Brownian motion starting at y, X t = x + ∫t 0 V(B s) ds for x ∈ (ab), with V(y) = y γ if y≥0, V(y)=−K(−y)γ if y≤0, where γ>0 and K is a given positive constant. Set τ ab=inf{t>0: X t∉(ab)} and σ 0=inf{t>0: B t=0}. In this paper we give several informations about the random variable τ ab. We namely evaluate the moments of the random variables \(B_{\tau _{ab} } and B_{\tau _{ab} \wedge \sigma _0 } \), and also show how to calculate the expectations \({\mathbb{E}}\left( {\tau _{ab}^m B_{\tau _{ab} }^n } \right) and {\mathbb{E}}\left( {\left( {\tau _{ab} \wedge \sigma _0 } \right)^m B_{\tau _{ab} \wedge \sigma _0 }^n } \right)\). Then, we explicitly determine the probability laws of the random variables \(B_{{\tau }_{ab} } and B_{{\tau }_{ab} \wedge \sigma _0 }\) as well as the probability \({\mathbb{P}}\left\{ {X_{\tau _{ab} } = a\left( {or b} \right)} \right\}\) by means of special functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abramowitz, M., and Stegun, I. A (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications.

  2. Bertoin, J. (1997). Lévy processes, Cambridge Press.

  3. Biane, Ph., and Yor, M. (1987). Valeurs principales associées aux temps locaux browniens. Bull. Sc. Math. Sér.2 111, 23–101.

    Google Scholar 

  4. Bingham, N. H. (1973). Maxima of sums of random variables and suprema of stable processes. Z. Wahrs. Verw. Geb. 26, 273–296.

    Google Scholar 

  5. Carleman, T. (1922). Über die Abelsche Integralgleichung mit konstanten Integrations-grenzen. Math. Z. 15, 111–120.

    Google Scholar 

  6. Dellacherie, C., and Meyer, P.-A. (1980). Probabilités et potentiel: théorie des martingales, Hermann.

  7. Emery, D. J. (1973). Exit problem for a spectrally positive process. Avd. Appl. Prob. 5, 498–520.

    Google Scholar 

  8. Erdélyi, A. (1981). Higher Transcendental Functions, Vols. 1 and 3.

  9. Franklin, J. N., and Rodemich, E. R. (1968). Numerical analysis of an elliptic-parabolic partial differential equation. SIAM J. Numer. Anal. 5(4), 680–716.

    Google Scholar 

  10. Goldman, M. (1971). On the first passage of the integrated Wiener process. Ann. Math. Stat. 42, 2150–2155.

    Google Scholar 

  11. Gor'kov, Ju. P. (1975). A formula for the solution of a certain boundary value problem for the stationary equation of Brownian motion. Sov. Math. Dokl. 16, 904–908.

    Google Scholar 

  12. Gradshteyn, I. S., and Ryzhik, I. M. (1965). Tables of Integrals, Series and Products, Academic Press.

  13. Hammersley, J. M. (1960). On the statistical loss of long-period comets from the solar system, II, Proc. 4th Berk. Symp. Math. Stat. Prob., Vol. 3, pp. 17–78.

    Google Scholar 

  14. Jeulin, T., and Yor, M. (1981). Sur les distributions de certaines fonctionnelles du mouvement brownien, Sém. Prob. XV, Lect. Notes Math., Vol. 850, pp. 210–226, Springer.

    Google Scholar 

  15. Kac, M. (1949). On distributions of certain Wiener functionals. Trans. Amer. Soc. 65, 1–13.

    Google Scholar 

  16. Lachal, A. (1991). Sur le premier instant de passage de l'intégrale du mouvement brownien. Ann. I.H.P. Sect. B 27(3), 385–405.

    Google Scholar 

  17. Lachal, A. (1997). Temps de sortie d'un intervalle borné pour l'intégrale du mouvement brownien, C. R. Acad. Sc. Paris Sér. I 324, 559–564.

    Google Scholar 

  18. Lachal, A. Quelques applications de la théorie des excursions à l'intégrale du mouvement brownien, preprint.

  19. Ledoux, M., and Talagrand, M. (1991). Probability in Banach Spaces: Isometry and Processes, Springer.

  20. Lefèbvre, M. (1989). First passage densities for a two-dimensional process. SIAM J. Appl. Math. 49(5), 1514–1523.

    Google Scholar 

  21. McGill, P. (1989). Some eigenvalue identities for Brownian motion. Math. Proc. Camb. Phil. Soc. 105, 587–596.

    Google Scholar 

  22. McKean Jr., H. P. (1963). A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2, 227–235.

    Google Scholar 

  23. Maisonneuve, B. (1975). Exit systems. Ann. Prob. 3(3), 399–411.

    Google Scholar 

  24. Masoliver, J., and Porrè, J. M., (1995). Exact solution to the mean exit time problem for free inertial processes driven by Gaussian white noise. Phys. Rev. Lett. 75, 189–192.

    Google Scholar 

  25. Oberhettinger, F., and Badii, L. (1973). Tables of Laplace Transforms, Springer-Verlag.

  26. Pitman, J., and Yor, M. (1981). Bessel processes and infinitely divisible distributions. In Williams, D. (ed.), Stochastic Integrals Proceedings, Lect. Notes Math., Vol. 851, Springer.

  27. Ray, D. (1958), Stable processes with an absorbing barrier. Trans. Amer. Math. Soc. 89, 16–24.

    Google Scholar 

  28. Revuz, D., and Yor, M. (1991). Continuous Martingales and Brownian Motion, Springer-Verlag.

  29. Rogers, L. C. G., and Williams, D. (1984). A differential equation in Wiener_Hopf theory. In Stochastic Analysis and Applications, Lect. Notes Math., Vol. 1095, pp. 187–199, Springer.

  30. Rogozin, B. A. (1972). The distribution of the first hit for stable and asymptotically stable walks on an interval. Theor. Prob. Appl. 17(2), 332–338.

    Google Scholar 

  31. Sakalyuk, K. D. (1961). Abel's generalized integral equation. Sov. Math. Dokl. 1, 332–335.

    Google Scholar 

  32. Widom, H. (1961). Stable processes and integral equations. Trans. Amer. Math. Soc. 98, 430–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lachal, A. First Exit Time from a Bounded Interval for a Certain Class of Additive Functionals of Brownian Motion. Journal of Theoretical Probability 13, 733–775 (2000). https://doi.org/10.1023/A:1007810528683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007810528683

Navigation