Skip to main content
Log in

Photomechanical Drug Delivery into Bacterial Biofilms

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate whether photomechanical waves generated bylasers can increase the permeability of a biofilm of the oral pathogenActinomyces viscosus.Methods. Biofilms of Actinomyces viscosus were formed on bovineenamel surfaces. The photomechanical wave was generated by ablationof a target with a Q-switched ruby laser and launched into the biofilmin the presence of 50 μg/ml methylene blue. The penetration depth ofmethylene blue was measured by confocal scanning laser microscopy.Also, the exposed biofilms were irradiated with light at 666 nm. Afterillumination, adherent bacteria were scraped and spread over thesurfaces of blood agar plates. Survival fractions were calculated bycounting bacterial colonies.Results. Confocal scanning laser microscopy revealed that a singlephotomechanical wave was sufficient to induce a 75% increase in thepenetration depth of methylene blue into the biofilm. This significantlyincreased the concentration of methylene blue in the biofilm enablingits photodestruction.Conclusions. Photomechanical waves provide a potentially powerfultool for drug delivery that might be utilized for treatment of microbial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. Gilbert, J. Das, and I. Foley. Biofilm susceptibility to antimicrobials. Adv. Dent. Res. 11:160–167 (1997).

    Google Scholar 

  2. J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott. Microbial biofilms. Ann. Rev. Microbiol. 49:711–745 (1995).

    Google Scholar 

  3. J. C. Nickel, I. Ruseska, J. B. Wright, and J. W. Costerton. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27:619–624 (1985).

    Google Scholar 

  4. H. Anwar, M. K. Dasgupta, and J. W. Costerton. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob. Agents Chemother. 34:2043–2046 (1990).

    Google Scholar 

  5. M. J. Ashby, J. E. Neale, S. J. Knott, and I. A. Critchley. Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. J. Antimicrob. Chemother. 33:443–452 (1994).

    Google Scholar 

  6. D. G. Davies, A. M. Chakrabarty, and G. G. Geesey. Exopolysaccharide production in biofilms: Substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 59:1181–1186 (1993).

    Google Scholar 

  7. B. D. Hoyle, L. J. Williams, and J. W. Costerton. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms. Infect. Immun. 61:777–780 (1993).

    Google Scholar 

  8. Z. Qian, R. D. Sagers, and W. G. Pitt. The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms. Ann. Biomed. Eng. 25:69–76 (1997).

    Google Scholar 

  9. J. W. Costerton, B. Ellis, K. Lam, F. Johnson, and A. E. Khoury. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob. Agents Chemother. 38:2803–2809 (1994).

    Google Scholar 

  10. N. Wellman, S. M. Fortun, and B. R. McLeod. Bacterial biofilms and the bioelectric effect. Antimicrob. Agents Chemother. 40:2012–2014 (1996).

    Google Scholar 

  11. A. G. Doukas, and T. J. Flotte. Physical characteristics and biological effects of laser-induced stress waves. Ultrasound Med. Biol. 22:151–164 (1996).

    Google Scholar 

  12. G. R. ter Haar. Biological effects of ultrasound in clinical applications, In Ultrasound: its chemical, physical, and biological effects. K. S. Suslick (eds), VCH Publishers, New York, USA, 1988, pp. 305–320.

    Google Scholar 

  13. A. G. Doukas, D. J. McAuliffe, S. Lee, V. Venugopalan, and T. J. Flotte. Physical factors involved in stress-wave-induced cell injury: The effect of stress gradient. Ultrasound Med. Biol. 21:961–967 (1995).

    Google Scholar 

  14. S. Lee, T. Anderson, H. Zhang, T. J. Flotte, and A. G. Doukas. Alteration of cell membrane by stress waves in vitro. Ultrasound Med. Biol. 22:1285–1293 (1996).

    Google Scholar 

  15. S. E. Mulholland, S. Lee, D. J. McAuliffe, and A. G. Doukas. Cell loading with laser-generated stress waves: the role of the stress gradient. Pharm. Res. 16:514–518 (1999).

    Google Scholar 

  16. S. Lee, D. J. McAuliffe, T. J. Flotte, N. Kollias, and A. G. Doukas. Photomechanical transcutaneous delivery of macromolecules. J. Invest. Dermatol. 111:925–929 (1998).

    Google Scholar 

  17. S. Lee, N. Kollias, D. J. McAuliffe, T. J. Flotte, and A. G. Doukas. Topical drug delivery in humans with a single photomechanical wave. Pharm Res. 16:1717–1721 (1999).

    Google Scholar 

  18. A. D. Haffajee, M. A. Cugini, S. Dibart, C. Smith, Jr. R. L. Kent, and S. S. Socransky. The effect of SRP on the clinical and microbiological parameters of periodontal diseases. J. Clin. Periodontol. 24:324–334 (1997).

    Google Scholar 

  19. A. N. Pierri. Theory of momentum transfer to a surface with a high-power laser. Phys. Fluids 16:1435–1440 (1973).

    Google Scholar 

  20. G. J. Tortora, B. R. Funke, and C. L. Case. Microbial growth, In Microbiology: an introduction. The Benjamin/Cummings Publishing Company, Inc., CA, USA, 1998, pp. 154–180.

    Google Scholar 

  21. S. Jockusch, D. Lee, and N. J. Turro. Photo-induced inactivation of viruses: Adsorption of methylene blue, thionine and thiopyronine on Q?bacteriophage. Proc. Natl. Acad. Sci. USA 93:7446–7551 (1996).

    Google Scholar 

  22. E. M. Tuite, and J. M. Kelly. Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J. Photochem. Photobiol. B 21:103–124 (1993).

    Google Scholar 

  23. C. E. Millson, M. Wilson, A. J. MacRobert, J. Bedwell, and S. G. Bown. The killing of Helicobacter pylori by low-power laser light in the presence of a photosensitizer. J. Med. Microbiol. 44:245–252 (1996).

    Google Scholar 

  24. N. S. Soukos, L. A. Ximenez-Fyvie, M. R. Hamblin, S.S. Socransky, and T. Hasan. Targeted antimicrobial photochemotherapy. Antimicrob. Agents Chemother. 42:2595–2601 (1998).

    Google Scholar 

  25. S. Singleton, R. Treloar, P. Warren, G. K. Watson, R. Hodgson, and C. Allison. Methods for microscopic characterization of oral biofilms: analysis of colonization, microstructure, and molecular transport phenomena. Adv. Dent. Res. 11:133–149 (1997).

    Google Scholar 

  26. J. R. Lawrence, D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. Caldwell. Optical sectioning in microbial biofilms. J. Bacteriol. 173:6558–6567 (1991).

    Google Scholar 

  27. D. DeBeer, P. Stoodley, and Z. Lewandowski. Liquid flow in heterogeneous biofilms. Biotech. Bioeng. 44:636–641 (1994).

    Google Scholar 

  28. R. O'Leary, A. M. Sved, E. H. Davies, T. G. Leighton, M. Wilson, and J. B. Kieser. The bactericidal effects of dental ultrasound on Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis:An in vitro investigation. J. Clin. Periodontol. 24:432–439 (1997).

    Google Scholar 

  29. M. Wilson. Lethal photosensitization of Streptococcus sanguis biofilms, In Life and Death in microbial biofilm. J. Wimpenny, P. Handley, P. Gilbert, H. Lappin-Scott (eds.), Cardiff, Bioline, UK, 1995, pp. 143–147.

    Google Scholar 

  30. J. W. T. Wimpenny, S. L., Kinniment, and M. A. Scourfield. The physiology and biochemistry of biofilm, In Microbial biofilms: Formation and Control. S. P. Denyer, S. P. Gorman, M. Sissman (eds.), Society for Applied Bacteriology Technical Series 30, Blackwell Scientific, Oxford, UK, 1993, pp. 51–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soukos, N.S., Socransky, S.S., Mulholland, S.E. et al. Photomechanical Drug Delivery into Bacterial Biofilms. Pharm Res 17, 405–409 (2000). https://doi.org/10.1023/A:1007568702118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007568702118

Navigation