Skip to main content
Log in

Operads and Motives in Deformation Quantization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The algebraic world of associative algebras has many deep connections with the geometric world of two-dimensional surfaces. Recently, D. Tamarkin discovered that the operad of chains of the little discs operad is formal, i.e. it is homotopy equivalent to its cohomology. From this fact and from Deligne's conjecture on Hochschild complexes follows almost immediately my formality result in deformation quantization. I review the situation as it looks now. Also I conjecture that the motivic Galois group acts on deformation quantizations, and speculate on possible relations of higher-dimensional algebras and of motives to quantum field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Phys. 111(1) (1978), 61–110.

    Google Scholar 

  2. Boardmann, J. M. and Vogt, R. M.: Homotopy Invariant Algebraic Structures onTopological Spaces, Lecture Notes in Math. 347, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  3. Broadhurst, D. J. and Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, hep-th/9609128.

  4. Cattaneo, A. and Felder, G.: A path integral approach to the Kontsevich quantization formula, math/9902090.

  5. Cohen, F. R.: The homology of Cn+1-spaces, n ≥ 0, The homology of iterated loop spaces, Lecture Notes in Math. 533, Springer-Verlag, Berlin, 1976. pp. 207–351.

    Google Scholar 

  6. Connes, A. and Kreimer, D.: Lessons from Quantum Field Theory, Lett. Math. Phys. 48 (1999), 85–96 (this issue).

    Google Scholar 

  7. Deligne, P., Griffiths, Ph., Morgan, J. and Sullivan, D.: Real homotopy theory of Kähler manifolds, Invent. Math 29 (1975), 245–274.

    Google Scholar 

  8. Drinfeld, V. G.: On quasi-triangular Quasi-Hopf algebras and a group closely related with Gal(\(\overline {\mathbb{Q}}\)/ℚ), Leningrad Math. J. 2 (1991), 829–860.

    Google Scholar 

  9. Etingof, P. and Kazhdan, D.: Quantization of Lie Bialgebras, I, Selecta Math. (N.S.) 2(1) (1996), 1–41.

    Google Scholar 

  10. Flato, M., Frønsdal, C. and Sternheimer, D.: Singletons, physics in AdS universe and oscillations of composite neutrinos, Lett. Math. Phys. 48 (1999), 109–119 (this issue).

    Google Scholar 

  11. Fulton, W. and MacPherson, R.: Compactification of configuration spaces, Ann. Math. 139 (1994), 183–225.

    Google Scholar 

  12. Gerstenhaber, M. and Voronov, A.: Homotopy G-algebras and moduli space operad, Intern. Math. Res. Notices (1995), No. 3, 141–153.

    Google Scholar 

  13. Getzler, E. and Jones, J. D. S.: Operads, homotopy algebra and iterated integrals for double loop spaces, hep-th/9403055.

  14. Ginzburg, V. and Kapranov, M.: Koszul duality for operads, Duke Math. J. 76(1) (1994), 203–272.

    Google Scholar 

  15. Kontsevich, M.: Deformation quantization of Poisson manifolds, I, math/9709180.

  16. Kontsevich, M.: Feynman diagrams and low-dimensional topology, in: First European Congr. of Math. (Paris, 1992), Vol. II, Progr. Math. 120, Birkhäuser, Basel, 1994, pp. 97–121.

    Google Scholar 

  17. MacLane, S.: Categories forWorking Mathematician, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  18. May, J. P.: Infinite loop space theory, Bull. Amer. Math. Soc. 83(4) (1977), 456–494.

    Google Scholar 

  19. McClure, J. and Smith, J.: Little 2-cubes and Hochschild cohomology, preliminary announcement.

  20. Nekovář, J.: Beilinson's conjectures, in: U. Jannsen, S. Kleiman, J. P. Serre (eds), Motives, Proc. Sympos. Pure Math. 55 (1), Amer. Math. Soc., Providence, 1994, pp. 537–570.

    Google Scholar 

  21. Nori, M.: private communication.

  22. Quillen, D.: Homotopical Algebra, Lecture Notes in Math., Springer-Verlag, Berlin, 1967.

    Google Scholar 

  23. Serre, J.-P.: Propriétés conjecturales des groups de Galois motiviques et des représentations l-adiques, in: U. Jannsen, S. Kleiman, J.-P. Serre (eds), Motives, Proc. Sympos. Pure Math. 55 (1), Amer. Math. Soc., Providence, 1994, pp. 377–400.

    Google Scholar 

  24. Tamarkin, D.: Another proof of M. Kontsevich formality theorem, math/9803025.

  25. Tamarkin, D.: Formality of chain operad of small squares, math/9809164.

  26. Voronov, A.: The Swiss-cheese operad, math/9807037.

  27. Zagier, D.: Values of zeta functions and their applications, in: First European Congr. Math. (Paris, 1992),Vol. II, Progr. Math. 120, Birkhäuser, Basel, 1994, pp. 497–512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontsevich, M. Operads and Motives in Deformation Quantization. Letters in Mathematical Physics 48, 35–72 (1999). https://doi.org/10.1023/A:1007555725247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007555725247

Navigation