Skip to main content
Log in

Deformation Behaviors of Tolbutamide, Hydroxypropyl-β-Cyclodextrin, and Their Dispersions

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The deformation behaviors of compressedfreeze-dried and spray-dried tolbutamide/hydroxypropyl-β-cyclodextrinmolecular dispersions were evaluated and compared with similarly preparedtolbutamides (TBM), hydroxypropyl-β-cyclodextrins (HP-β-CD) and astheir physical dispersions.

Methods. TBM, HP-β-CD, and their 1:1 moleculardispersions were prepared by freeze-drying and spray-drying, and physicaldispersions of TBM and HP-β-CD were blended. Deformation properties ofthe prepared materials were evaluated by using a compaction simulator andconstants derived from Heckel plots. Molecular dynamics (MD) simulationswere performed in order to gain a molecular-level view on the deformationbehavior of TBM-HP-β-CD inclusion complex.

Results. The freeze-dried TBM polymorphic form II was lessprone to overall particle deformation than the spray-dried stable form I.Formation of molecular dispersions decreased the plastic and elasticbehaviors of these materials. Also, the MD simulations showed a reducedmolecular flexibility of the TBM-HP-β-CD inclusion complex, as comparedto HP-β-CD.

Conclusions. The formation of TBM and HP-β-CDmolecular dispersion resulted in more rigid molecular arrangements, whichwere less prone to deformation than either HP-β-CDs or physicaldispersions. The results showed how differing molecular, solid, particle,and powder state properties affect the deformation properties of thematerials studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Muñ oz-Ruiz and P. Paronen. Time-dependent densification behavior of cyclodextrins. J. Pharm. Pharmacol. 48:790–797 (1996).

    Google Scholar 

  2. G. S. Pande and R. F. Shangraw. Characterization of β-cyclodextrin for direct compression tableting. Int. J. Pharm. 101:71–80 (1994).

    Google Scholar 

  3. G. S. Pande and R. F. Shangraw. Characterization of β-cyclodextrin for direct compression tableting: II. The role of moisture in the compactibility of β-cyclodextrin. Int. J. Pharm. 124:23–239 (1995).

    Google Scholar 

  4. T. Tsai, J.-S. Wu, H.-O. Ho, and M. T. Sheu. Modification of physical characteristics of microcrystalline cellulose by codrying with β-cyclodextrin. J. Pharm. Sci. 87:117–122 (1998).

    Google Scholar 

  5. Lj. Tasic, K. Pintye-Hó di, and P. Sabo-Revesz. Evaluation of compression behavior of paracetamol tablets produced with β-cyclodextrin dispersions. Part II. Energy distribution study of tablets. Drug Dev. Ind. Pharm. 23:1153–1158 (1997).

    Google Scholar 

  6. K. B. Lipkowitz. Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98:1829–1873 (1998).

    Google Scholar 

  7. J. E. H. Koehler, W. Saenger, and W. F. van Gunsteren. Conformational differences between β-cyclodextrin in aqueous solution and in crystalline form. A molecular dynamics study. J. Mol. Biol. 203:241–250 (1988).

    Google Scholar 

  8. E. Suihko, O. Korhonen, T. Järvinen, A. Poso, J. Ketolainen, E. Laine, and P. Paronen. Preparation and characterization of a solid tolbutamide: Hydroxypropyl-β-cyclodextrin inclusion complex. AAPS Pharm. Sci. 1(Suppl):3731 (1999).

    Google Scholar 

  9. E. Suihko, O. Korhonen, T. Järvinen, J. Ketolainen, E. Laine, and P. Paronen. Evaluation of the physical properties of a tolbutamide/hydroxypropyl-β-cyclodextrin inclusion complex. In M. H. Rubinstein (ed.), Proceedings in the 16th Pharmaceutical Technology Conference, Athens, Greece, 1997, vol. 2, pp. 286–294.

  10. K. Kimura, F. Hirayama, H. Arima, and K. Uekama. Solid-state 13C nuclear magnetic resonance spectroscopic study on amorphous solid complexes of tolbutamide with 2-hydroxypropyl-α-and-β-cyclodextrins. Pharm. Res. 16:1729–1734 (1999).

    Google Scholar 

  11. K. Kimura, F. Hirayama, and K. Uekama. Characterization of tolbutamide polymorphs (Burger's forms II and IV) and polymorphic transition behavior. J. Pharm. Sci. 88:385–391 (1999).

    Google Scholar 

  12. H. Rumpf. The characteristics of system and their changes of state. In B. Scarlett (ed.), Particle Technology, Chapman and Hall, London, UK, 1990, pp. 14–15.

    Google Scholar 

  13. R. W. Heckel. Density pressure relationship in powder compaction. Trans. Metall. Soc. AIME. 221:671–675 (1961a).

    Google Scholar 

  14. R. W. Heckel. An analysis of powder compaction phenomena. Trans. Metall. Soc. AIME. 221:1001–1008 (1961b).

    Google Scholar 

  15. P. Paronen and M. J. Juslin. Compressional characteristics of four starches. J. Pharm. Pharmacol. 35:627–635 (1983).

    Google Scholar 

  16. R. J. Roberts and R. C. Rowe. The effect of punch velocity on the compaction of a variety of materials. J. Pharm. Pharmacol. 37:377–384 (1985).

    Google Scholar 

  17. K. A. Nirmala and D. S. Sake Gowda. Structure determination of tolbutamide. Acta Crystallogr., Sect. B 37:1597–1599 (1981).

    Google Scholar 

  18. P. Charpin, I. Nicolis, F. Villain, C. de Rango, and A. W. Coleman. β-Cyclodextrin-potassium hydroxide-water (1/1/8). Acta Crystallogr., Sect. C (Cr. Str. Comm.) 47:1829–1832 (1991).

    Google Scholar 

  19. E. Doelker. Recent advances in tableting science. Boll. Chim. Pharm. 127:37–49 (1988).

    Google Scholar 

  20. P. Paronen. Heckel plots as indicators of elastic properties. In M. Rubinstein (ed.), Tablet technology, vol. 1. Ellis Horwood, England, 1987, pp. 139–144.

    Google Scholar 

  21. L. W. Wong and N. Pilpel. The effect of particle shape on the mechanical properties of powders. Int. J. Pharm. 59:145–154 (1990).

    Google Scholar 

  22. H. Vromans, G. K. Bolhuis, C. F. Lerk, K. D. Kussendrager, and H. Bosch. Studies on tableting properties of lactose. VI. Consolidation and compaction of spray dried amorphous lactose. Acta Pharm. Suec. 23:231–240 (1986).

    Google Scholar 

  23. S. P. Duddu and K. Weller. Importance of glass transition temperature in accelerated stability testing of amorphous solids: Case study using a lyophilized aspirin formulation. J. Pharm. Sci. 85:345–347 (1996).

    Google Scholar 

  24. A. Nokhodchi, J. L. Ford, P. H. Rowe, and M. H. Rubinstein. The effect of moisture on the Heckel and energy analysis of hydroxypropylmethylcellulose 2208 (HPMC K4M). J. Pharm. Pharmacol. 48:1122–1127 (1996).

    Google Scholar 

  25. Humbert-Droz, R. Gurny, D. Mordier, and E. Doelker. Densification behaviour of drugs presenting availability problems. Int. J Pharm. Technol. Prod. Manuf. 4:29–35 (1983).

    Google Scholar 

  26. R. J. Roberts and R. C. Rowe. Mechanical properties. In G. Alderborn and C. Nyströ (eds.), Pharmaceutical powder compaction technology, Marcel Dekker Inc., New York, NY, 1996, pp. 283–322.

    Google Scholar 

  27. Ragnarsson and J. Sjögren. Compressibility and tablet properties of two polymorphs of metoprolol tartrate. Acta Pharm. Suec. 21:321–329 (1984).

    Google Scholar 

  28. Kopp-Kubel, C. Beyer, E. Graf, F. Kubel, and E. Doelker. Einfluss der Polymorphie von Phenobarbital auf Tabletteneigenschaffen. Eur. J. Pharm. Biopharm. 38:17–25 (1992).

    Google Scholar 

  29. P. Berthault, D. Dushesne, H. Desvaux, and B. Gilquin. A self-included cyclomaltoheptaose derivative studied by NMR spectroscopy and molecular modelling. Carbohydr. Res. 278:267–287 (1995).

    Google Scholar 

  30. Muñoz-Botella, M. A. Martin, B. del Castillo, and L. Vásquez. Differentiating inclusion complexes from host molecules by tapping-mode atomic force microscopy. Biophys. J. 71:86–90 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suihko, E., Poso, A., Korhonen, O. et al. Deformation Behaviors of Tolbutamide, Hydroxypropyl-β-Cyclodextrin, and Their Dispersions. Pharm Res 17, 942–948 (2000). https://doi.org/10.1023/A:1007523103979

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007523103979

Navigation