Skip to main content
Log in

Path Integrals for a Class of P-Adic Schrödinger Equations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The theme of doing quantum mechanics on all Abelian groups goes back to Schwinger and Weyl. If the group is a vector space of finite dimension over a non-Archimedean locally compact division ring, it is of interest to examine the structure of dynamical systems defined by Hamiltonians analogous to those encountered over the field of real numbers. In this Letter, a path integral formula for the imaginary time propagators of these Hamiltonians is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weyl, H.: Theory of Groups and Quantum Mechanics, Dover, New York, 1931, Ch. III, §16, Ch. IV, § §14, 15.

  2. Schwinger, J.: Quantum Kinematics and Dynamics, W. A. Benjamin, New York, 1970.

    Google Scholar 

  3. Digernes, T.: Varadarajan, V. S., and Varadhan, S. R. S., Rev. Math. Phys. 6 (1994), 621.

    Google Scholar 

  4. Varadarajan, V. S.: Lett. Math. Phys. 34 (1995), 319.

    Google Scholar 

  5. Digernes, T., Husstad, E., and Varadarajan, V. S.: Finite approximations for Weyl systems (to be submitted).

  6. Skorokhod, A. V.: Dokl. Akad. Nauk. SSSR, 104 (1955), 364; 106, (1956), 781; Kolmogorov, A. N.: Theor. Prob. Appl. 1 (1956), 215.

    Google Scholar 

  7. Parthasarathy, K. R.: Probability Measures on Metric Spaces, Academic Press, New York, 1967.

    Google Scholar 

  8. Stovicek, P. and Tolar, J.: Quantum mechanics in a discrete space-time, Rep. Math. Phys. 20 (1984), 157; Beltrametti, E. G.: Can a finite geometry describe the physical space-time?, Atti del convegno di geometria combinatoria e sue applicazioni, Perugia, 1971.

    Google Scholar 

  9. Ulam, S.: Sets, Numbers, and Universes, Selected Works, MIT Press, Cambridge, Mass., 1974. See paper [8] (p. 265) with commentary by E. Beltrametti, p. 687.

    Google Scholar 

  10. Vladimirov, V. S. and Volovich, I.: Lett. Math. Phys. 18 (1989), 43; Vladimirov, V. S.: Leningrad Math. J 2 (1991), 1261.

    Google Scholar 

  11. Parisi, G.: Modern Phys. Lett. A 3 (1988), 639; Meurice, Y.: Phys. Lett. B 104 (1990), 245; Zelenov, E. I.: J. Math. Phys. 32 (1991), 147.

    Google Scholar 

  12. Brekke, L. and Freund, P. G. O.: Phys. Rep. 233 (1993), 1.

    Google Scholar 

  13. Weil, A.: Basic Number Theory, Springer-Verlag, New York, 1967.

    Google Scholar 

  14. Čentsov, N. N.: Theory Probab. Appl. 1 (1956), 140.

    Google Scholar 

  15. Simon, B.: Functional Integration and Quantum Physics, Academic Press, New York, 1979.

    Google Scholar 

  16. Shafarevitch, I. R.: Algebra, Encyclopedia of Mathematical Sciences, Vol 11, Springer-Verlag, New York, 1990.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varadarajan, V.S. Path Integrals for a Class of P-Adic Schrödinger Equations. Letters in Mathematical Physics 39, 97–106 (1997). https://doi.org/10.1023/A:1007364631796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007364631796

Navigation