Skip to main content
Log in

A general approach to desalting oligosaccharides released from glycoproteins

Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Desalting of sugar samples is essential for the success of many techniques of carbohydrate analysis such as mass spectrometry, capillary electrophoresis, anion exchange chromatography, enzyme degradation and chemical derivatization. All desalting methods which are currently used have limitations: for example, mixed-bed ion-exchange columns risk the loss of charged sugars, precipitation of salt by a non-aqueous solvent can result in co-precipitation of oligosaccharides, and gel chromatography uses highly crosslinked packings in which separation of small oligosaccharides is difficult to achieve. We demonstrate that graphitized carbon as a solid phase extraction cartridge can be used for the purification of oligosaccharides (or their derivatives) from solutions containing one or more of the following contaminants: salts (including salts of hydroxide, acetate, phosphate), monosaccharides, detergents (sodium dodecyl sulfate and Triton X-100), protein (including enzymes) and reagents for the release of oligosaccharides from glycoconjugates (such as hydrazine and sodium borohydride). There is complete recovery of the oligosaccharides from the adsorbent which can also be used to fractionate acidic and neutral glycans. Specific applications such as clean-up of N-linked oligosaccharides after removal by PNGase F and hydrazine, desalting of O-linked glycans after removal by alkali, on-line desalting of HPAEC-separated oligosaccharides and β-eliminated alditols prior to electrospray mass spectrometry, and purification of oligosaccharides from urine are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Whistler RL, BeMiller JN (1962) In Methods in Carbohydrate Chemistry, (Whistler RL, Wolfrom ML, eds) Vol 1, pp 42-4. New York: Academic Press.

    Google Scholar 

  2. Knox JH, Kaur B, Millward J (1986) J Chromatog 352: 3-25.

    Google Scholar 

  3. Koizumi K, Okada Y, Fukuda M (1991) Carbohydr Res 215: 67-80.

    Google Scholar 

  4. Davies M, Smith KD, Harbin A, Hounsell EF (1992) J Chromatog 609: 125-31.

    Google Scholar 

  5. Davies M, Smith KD, Carruthers RA, Chai, W, Lawson AM, Hounsell EF (1993) J Chromatog 646: 317-26.

    Google Scholar 

  6. Fan JQ, Kondo A, Kato I, Lee YC (1994) Anal Biochem 219: 224-9.

    Google Scholar 

  7. Patel T, Bruce J, Merry A, Bigge C, Wormald M, Jaques A, Parekh R (1993) Biochemistry 32: 679-93.

    Google Scholar 

  8. Bertolini M, Pigman W (1967) J Biol Chem 242: 3776

    Google Scholar 

  9. Ou K, Wilkins MR, Jan JX, Gooley AA, Fung Y, Scheumack D, Williams KL (1996) J Chromatog A 723: 219-25.

    Google Scholar 

  10. Shively, JE (1986) In Methods of Protein Characterization (Shively JE, ed) p 70. New Jersey: Humana Press.

  11. Feigl F. (1966) In Spot Tests in Organic Analysis (Feigl F, ed) 7th Edition, pp 274-5. Amsterdam: Elsevier.

    Google Scholar 

  12. Spiro RG (1966) J Biol Chem 239: 567-73.

    Google Scholar 

  13. Anson DS, Taylor JA, Bielicki J, Harper GS, Peters C, Gibson GJ, Hopwood JJ (1992) Biochem J 284: 789-94.

    Google Scholar 

  14. Townsend RR, Hardy MR, Cumming DA, Carver JP, Bendiak B (1989) Anal Biochem 182: 1-8.

    Google Scholar 

  15. Corradi Da Silva ML, Stubbs HJ, Tamura T, Rice KG (1995) Arch Biochem Biophys 318: 465-75.

    Google Scholar 

  16. Chen L-M, Yet M-G, Shao M-C (1988) FASEB J 2: 2819-24.

    Google Scholar 

  17. Pisano A, Redmond JW, Williams KL, Gooley AA (1993) Glycobiology 3: 429-35.

    Google Scholar 

  18. Peelen GOH, de Jong JGN, Wevers RA (1994) Clin Chem 40: 914-21.

    Google Scholar 

  19. Crescenzi C, Di Corcia A, Passariello G, Samperi R, Carou MIT (1996) J Chromatog A 733: 41-55.

    Google Scholar 

  20. Knox JH, Kaur B (1986) J Chromatog 352: 3-25.

    Google Scholar 

  21. Koizumi K (1996) J Chromatog A 720: 119-26.

    Google Scholar 

  22. Lee YC (1996) J Chromatog A 720: 137-49.

    Google Scholar 

  23. Papac DI, Jones AJS, Basa LJ (1997) In Techniques in Glycobiology, (Townsend RR, Hotchkiss Jr. AT, eds), pp 33-51. New York: Marcel Dekker.

    Google Scholar 

  24. Börnsen KO, Mohr MD, Widmer HM (1995) Rapid Comm Mass Spectrom 9: 1031-4.

    Google Scholar 

  25. Küster B, Naven TJP, Harvey DJ (1996) J Mass Spectrom 31: 1131-40.

    Google Scholar 

  26. Rouse JC, Vath JE (1996) Anal Biochem 238: 82-92.

    Google Scholar 

  27. Shahgholi M, Ross MM, Callahan JH (1996) Anal Chem 68: 1335-41.

    Google Scholar 

  28. Packer NH, Lawson MA, Jardine DR, Sanchez J-C, Gooley AA (1998) Electrophoresis 19: 981-88.

    Google Scholar 

  29. Grewal T, Bartlett A, Burgess JW, Packer NH, Stanley KK (1995) Atherosclerosis 121: 151-63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Packer, N.H., Lawson, M.A., Jardine, D.R. et al. A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J 15, 737–747 (1998). https://doi.org/10.1023/A:1006983125913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006983125913

Navigation