Skip to main content
Log in

Kinetics and mechanism of the oxidation of alkyl and aryl methyl ketones by permanganate ion in aqueous ethanoic acid

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of electron-transfer reactions between permanganate ion and ethyl and aryl methyl ketones have been studied in aqueous MeCO2H acid medium in the presence of HClO4 at different temperatures. For ethyl methyl ketone and XC6H4COMe (X = p-Cl, p-Br or p-NO2) the reaction obeys the rate law −d[MnO4−]/dt = (kKe[H+][MnO4−][RCO Me])/(1 + Ke[H+][RCOMe]).␣But the oxidations of XC6H4COMe (X = p-Me and p-OMe)␣follow the rate equation −d[MnO4−]/dt = k3[H+][MnO4−][RCOMe]. The reaction involves a fast pre-equilibrium with intermediate formation of a permanganate ester before the two-electron transfer, rate-determining, step. A number of thermodynamic parameters have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Stewart in K. B. Wiberg (Ed.), Oxidation in Organic Chemistry, Academic Press, New York, 1965, Part A, (a) p. 35, (b) p. 25.

    Google Scholar 

  2. D. G. Lee, The Oxidation of Organic Compounds by Permanganate Ion and Hexavalent Chromium, Open Court, La Salle, IL. 1980.

    Google Scholar 

  3. K. B. Wiberg and R. Stewart, J. Am. Chem. Soc., 77, 1786 (1955).

    Google Scholar 

  4. R. Stewart and M. M. Mocek, Can. J. Chem., 41, 1160 (1963).

    Google Scholar 

  5. J. L. Kurz, J. Am. Chem. Soc., 85, 987 (1963).

    Google Scholar 

  6. J. L. Kurz, J. Am. Chem. Soc., 86, 2229 (1964).

    Google Scholar 

  7. F. Freeman, J. B. Brant, N. B. Hester, A. A. Kamego, M. L. Kasner, T. G. McLaughlin and E. W. Paul, J. Org. Chem., 35, 982 (1970).

    Google Scholar 

  8. F. Freeman, D. K. Lin and G. R. Moore, J. Org. Chem., 47, 56 (1982).

    Google Scholar 

  9. C. F. Koelsch, Org. Synth. 1955, Coll. Vol. III, 791.

    Google Scholar 

  10. A. Claus and W. Neukranz, J. Prakt. Chem. 44, 77 (1891).

    Google Scholar 

  11. K. K. Banerji, Z. Naturforsch., Teil B 27, 772 (1972).

    Google Scholar 

  12. K. K. Banerji, Bull. Chem. Soc. Jpn., 46, 3623 (1973).

    Google Scholar 

  13. Marigangaiah, P. Nath and K. K. Banerji, Aust. J. Chem., 29, 1939 (1976).

    Google Scholar 

  14. I. Bhatia and K. K. Banerji, J. Chem. Soc., Perkin Trans. 2, 1577 (1983).

    Google Scholar 

  15. R. M. Hasan, M. A. Mousa and M. H. Wahadan, J. Chem. Soc., Dalton Trans., 605 (1988).

  16. J. F. Perez-Benito, R. M. Rodriguez, J. de Andres, E. Brillas and J. A. Garrido, Int. J. Chem. Kinet., 21, 71 (1989).

    Google Scholar 

  17. G. Sikkander, K. A. B. Ahamedi and S. Kannan, Inorg. Chem., 31, 845 (1992).

    Google Scholar 

  18. K. K. Sen Gupta, P. K. Sen and G. Mukhopadhyay, Transition Met. Chem., 18, 369 (1993).

    Google Scholar 

  19. P. K. Sen, A. Sanyal and K. K. Sen Gupta, Int. J. Chem. Kinet., 27, 379 (1995).

    Google Scholar 

  20. W. C. E. Higginson and D. Sutton, J. Chem. Soc., 1402 (1953).

  21. Y. K. Gupta, J. Inorg. Nucl. Chem., 19, 179 (1961).

    Google Scholar 

  22. A. E. Cahill and H. Taube, J. Am. Chem. Soc., 74, 2312 (1952).

    Google Scholar 

  23. L. J. Kirschenbaum and J. R. Sutter, J. Phys. Chem., 70, 3863 (1966).

    Google Scholar 

  24. E. Zahonyi-Budo and L. I. Simandi, Inorg. Chim. Acta, 181, 149 (1991).

    Google Scholar 

  25. E. Zahonyi-Budo and L. I. Simandi, Inorg. Chim. Acta, 191, 1 (1992).

    Google Scholar 

  26. N. Bailey, A. Carrington, K. A. K. Lott and M. C. R. Symons, J. Chem. Soc., 290 (1960).

  27. G. P. Panigrahi and B. P. Sahu, Int. J. Chem. Kinet., 25, 595 (1993).

    Google Scholar 

  28. F. R. Duke, J. Phys. Chem., 56, 882 (1952).

    Google Scholar 

  29. F. C. Tompkins, Trans. Faraday Soc., 39, 280 (1943).

    Google Scholar 

  30. L. I. Simandi and M. Jaky, J. Am. Chem. Soc., 98, 1995 (1976).

    Google Scholar 

  31. O. Exner, Nature (London), 201, 488 (1964).

    Google Scholar 

  32. H. T. Clarke, A Handbook of Organic Analysis, Edward Arnold, London, 1960, (a) p. 136, (b) p. 140, (c) and (d) p. 189, (e) p. 141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, P.K., Mukhopadhyay, G. & Gupta, K.K.S. Kinetics and mechanism of the oxidation of alkyl and aryl methyl ketones by permanganate ion in aqueous ethanoic acid. Transition Metal Chemistry 23, 577–582 (1998). https://doi.org/10.1023/A:1006980502784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006980502784

Keywords

Navigation