Skip to main content
Log in

Structures and activities of cyclic ADP-ribose, NAADP and their metabolic enzymes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

ADP-ribosyl cyclase and CD38 are multi-functional enzymes involved in calcium signaling. Both can cyclize NAD and its guanine analog, NGD, at two different sites of the purine ring, N1 and N7, respectively, to produce cyclic ADP-ribose (cADPR) and cyclic GDP-ribose, a fluorescent but inactive analog. Both enzymes can also catalyze the exchange of the nicotinamide group of NADP with nicotinic acid, producing yet another potent activator of Ca2+ mobilization, nicotinic acid adenine dinucleotide phosphate (NAADP). The Ca2+ release mechanism activated by NAADP is totally independent of cADPR and inositol trisphosphate indicating it is a novel and hitherto unknown Ca2+ signaling pathway. This article summarizes the current results on the structures and activities of cADPR, NAADP and the enzymes that catalyze their syntheses. A comprehensive model accounting for the novel multi-functionality of ADP-ribosyl cyclase and CD38 is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clapper DL, Walseth TF, Dargie PJ, Lee HC: Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem 262: 9561–9568, 1987

    PubMed  Google Scholar 

  2. Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL: Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem 264: 1608–1615, 1989

    PubMed  Google Scholar 

  3. Lee HC, Aarhus R, Levitt D: The crystal structure of cyclic ADP-ribose. Nature Struct Biol 1: 143–144, 1994

    PubMed  Google Scholar 

  4. Galione A, Lee HC, Busa WB: Ca2+-induced Ca2+ release in sea urchin egg homogenates: Modulation by cyclic ADP-ribose. Science 253: 1143–1146, 1991

    PubMed  Google Scholar 

  5. Lee HC: Potentiation of calcium-and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem 268: 293–299, 1993

    PubMed  Google Scholar 

  6. Lee HC: Modulator and messenger functions of cyclic ADP-ribose in calcium signaling. Re Prog Horm Res 51: 355–388, 1996

    Google Scholar 

  7. Lee HC, Aarhus R, Graeff RM: Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J Biol Chem 270: 9060–9066, 1995

    PubMed  Google Scholar 

  8. Lee HC, Aarhus R, Graeff R, Gurnack ME, Walseth TR: Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370: 307–309, 1994

    PubMed  Google Scholar 

  9. Tanaka Y, Tashjian AH Jr: Calmodulin is a selective mediator of Ca2+-induced Ca2+ release via the ryanodine receptor-like Ca2+ channel triggered by cyclic ADP-ribose. Proc Natl Acad Sci USA 92: 3244–3248, 1995

    PubMed  Google Scholar 

  10. Lee HC, Aarhus R: A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem 270: 2152–2157, 1995

    PubMed  Google Scholar 

  11. Chini EN, Dousa TP: Nicotinate-adenine dinucleotide phosphateinduced Ca2+-release does not behave as a Ca2+-induced Ca2+-release system. Biochem J 316: 709–711, 1996

    PubMed  Google Scholar 

  12. Genazzani AA, Galione A: Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J 315: 721–725, 1996

    PubMed  Google Scholar 

  13. Lee HC, Aarhus R: ADP-ribosyl cyclase: An enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Reg 2: 203–209, 1991

    Google Scholar 

  14. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF, Lee HC: Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056–1059, 1993

    PubMed  Google Scholar 

  15. Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem 270: 30327–30333, 1995

    PubMed  Google Scholar 

  16. Lee HC, Aarhus R: Wide distribution of an enzyme that catalyzes the hydrolysis of cyclic ADP-ribose. Biochim Biophys Acta 1164: 68–74, 1993

    PubMed  Google Scholar 

  17. Lee HC, Zocchi E, Guida L, Franco L, Benatti U, De Flora A: Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem Biophys Res Commun 191: 639–645, 1993

    PubMed  Google Scholar 

  18. Lee HC, Aarhus R, Gee KR, Kestner T: Caged nicotinic acid adenine dinucleotide phosphate-synthesis and use. J Biol Chem 272: 4172–4178, 1997

    PubMed  Google Scholar 

  19. Aarhus R, Gee K, Lee HC: Caged cyclic ADP-ribose-synthesis and use. J Biol Chem 270: 7745–7749, 1995

    PubMed  Google Scholar 

  20. Aarhus R, Dickey DM, Graeff RM, Gee KR, Walseth TF, Lee HC: Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem 271: 8513–8516, 1996

    PubMed  Google Scholar 

  21. Guo X, Becker PL: Cyclic ADP-ribose-gated Ca2+ release in sea urchin eggs requires an elevated [Ca2+]. J Biol Chem 272: 16984–16989, 1997

    PubMed  Google Scholar 

  22. Lee HC: Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiological Reviews: 77: 1133–1164, 1997

    PubMed  Google Scholar 

  23. Walseth TF, Lee HC: Synthesis and characterization of antagonists of cyclic-ADP-ribose induced Ca2+ release. Biochim Biophys Acta 1178: 235–242, 1993

    PubMed  Google Scholar 

  24. Lee HC, Aarhus R, Walseth TF: Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261: 352–355, 1993

    PubMed  Google Scholar 

  25. Clementi E, Riccio M, Sciorati C, Nistico G, Meldolesi J: The type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of the nitric oxide/cGMP pathway. J Biol Chem 271: 17739–17745, 1996

    PubMed  Google Scholar 

  26. Guse AH, Dasilva CP, Emmrich F, Ashamu GA, Potter BVL, Mayr GW: Characterization of cyclic adenosine diphosphate-riboseinduced Ca2+ release in T lymphocyte cell lines. J Immunol 155: 3353–3359, 1995

    PubMed  Google Scholar 

  27. Kuemmerle JF, Makhlouf GM: Agonist-stimulated cyclic ADP ribose. Endogenous modulator of Ca2+-induced Ca2+ release in intestinal longitudinal muscle. J Biol Chem 270: 25488–25494, 1995

    PubMed  Google Scholar 

  28. Rakovic S, Galione A, Ashamu GA, Potter BVL, Terrar DA: A specific cyclic ADP ribose antagonist inhibits cardiac excitation-contraction coupling. Curr Biol 6: 989–996, 1996

    PubMed  Google Scholar 

  29. Sethi JK, Empson RM, Bailey VC, Potter BVL, Galione A: 7–Deaza-8–bromo-cyclic ADP-ribose, the first membrane-permeant, hydrolysisresistant cyclic ADP-ribose antagonist. J Biol Chem 272: 16358–16363, 1997

    PubMed  Google Scholar 

  30. Bailey VC, Fortt SM, Summerhill RJ, Galione A, Potter BVL: Cyclic aristeromycin diphosphate ribose: A potent and poorly hydrolysable Ca2+ minic of cyclic adenosine diphosphate ribose. FEBS Lett 379: 227–228, 1996

    PubMed  Google Scholar 

  31. Bailey VC, Sethi JK, Font SM, Galione A, Potter BVL: 7–Deaza cyclic adenosine 5′-diphosphate ribose - first example of a Ca2+-mobilizing partial agonist related to cyclic adenosine 5′-diphosphate ribose. Chem Biol 4: 51–61, 1997

    PubMed  Google Scholar 

  32. Lee HC, Aarhus, R.: Structural determinants of nicotinic acid adenine dinucleotide phosphate important for its calcium-mobilizing activity. J Biol Chem 272: 20378–20383, 1997

    PubMed  Google Scholar 

  33. Genazzani AA, Empson RM, Galione A: Unique inactivation properties of NAADP-sensitive Ca2+ release. J Biol Chem 271: 11599–11602, 1996

    PubMed  Google Scholar 

  34. States DJ, Walseth TF, Lee HC: Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem Sci 17: 495, 1992

    Google Scholar 

  35. Glick DL, Hellmich MR, Beushausen S, Tempst P, Bayley H, Strumwasser F: Primary structure of a molluscan egg-specific NADase, a secondmessenger enzyme. Cell Reg 2: 211–218, 1991

    Google Scholar 

  36. Hellmich MR, Strumwasser F: Purification and characterization of a molluscan egg specific NADase, a second-messenger enzyme. Cell Reg 2: 193–202, 1991

    Google Scholar 

  37. Prasad GS, McRee DE, Stura EA, Levitt DG, Lee HC, Stout CD: Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38. Nature Struct Biol 3: 957–964, 1996

    PubMed  Google Scholar 

  38. Jackson DG, Bell JI: Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J Immunol 144: 2811–2815, 1990

    PubMed  Google Scholar 

  39. Malavasi F, Funaro A, Roggero S, Horenstein A, Calosso L, Mehta K: Human CD38: A glycoprotein in search of a function. Immunol Today 15: 95–97, 1994

    PubMed  Google Scholar 

  40. Prasad GS, Levitt DG, Lee HC, Stout CD: Crystallization of ADP-ribosyl cyclase from Aplysia californica. Proteins 24: 138–140, 1996

    PubMed  Google Scholar 

  41. Lee HC: Calcium signaling by cyclic ADP-ribose and NAADP - A decade of exploration. Cell Biochem Biophys 28: 1–17, 1998

    PubMed  Google Scholar 

  42. Zocchi E, Franco L, Guida L, Calder L, De Flora A: Self-aggregation of purified and membrane-bound erythrocyte CD38 induces extensive decrease of its ADP-ribosyl cyclase activity. FEBS Lett 359: 35–40, 1995

    PubMed  Google Scholar 

  43. Umar S, Malavasi F, Mehta K: Post-translational modification of CD38 protein into a high molecular weight form alters its catalytic properties. J Biol Chem 271: 15922–15927, 1996

    PubMed  Google Scholar 

  44. Munshi C, Lee HC: High-level expression of recombinant Aplysia ADP-ribosyl cyclase in pichia pastoris by fermentation. Prot Exp Pur, 1997 (in press)

  45. Munshi CB, Fryxell KB, Lee HC, Branton WD: Large scale production of human CD38 in yeast by fermentation. Meth Enzymol 280: 318–330, 1997

    PubMed  Google Scholar 

  46. Fryxell KB, O'Donoghue K, Graeff RM, Lee HC, Branton WD: Functional expression of soluble forms of human CD38 in Escherichia coli and Pichia pastoris. Prot Exp Pur 6: 329–336, 1995

    Google Scholar 

  47. Lee HC, Graeff, RM, Walseth TF: ADP-ribosyl cyclase and CD38. Multifunctional enzymes in Ca2+ signaling. Adv Exper Med Biol 419: 411–419, 1997

    Google Scholar 

  48. Lee HC, Galione A, Walseth TF: Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vit Horm 48: 199–257, 1994

    Google Scholar 

  49. Graeff RM, Walseth TF, Hill HK, Lee HC: Fluorescent analogs of cyclic ADP-ribose: Synthesis, spectral characterization, and use. Biochemistry 35: 379–386, 1996

    PubMed  Google Scholar 

  50. Graeff RM, Walseth TF, Fryxell K, Branton WD, Lee HC: Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem 269: 30260–30267, 1994

    PubMed  Google Scholar 

  51. Kim H, Jacobson EL, Jacobson MK: Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science 261: 1330–1333, 1993

    PubMed  Google Scholar 

  52. Lee HC, Graeff R, Walseth TR: Cyclic ADP-ribose and its metabolic enzymes. Biochimie 77: 345–355, 1995

    PubMed  Google Scholar 

  53. Graeff RM, Walseth TF, Lee HC: A radio-immunoassay for measuring endogenous levels of cyclic ADP-ribose in tissues. Meth Enzymol 280: 230–241, 1997

    PubMed  Google Scholar 

  54. Hilz H: ADP-ribose: A historical overview. Adv Exp Med Biol 419: 15–24, 1997

    PubMed  Google Scholar 

  55. Koch-Nolte FaH F: Mono(ADP-ribosyl)transferases and related enzymes in animal tissues: Emerging gene families. Adv Exp Med Biol 419: 1–13, 1997

    Google Scholar 

  56. Graeff RM, Mehta K, Lee HC: GDP-ribosyl cyclase activity as a measure of CD38 induction by retinoic acid in HL-60 cells. Biochem Biophys Res Commun 205: 722–727, 1994.

    PubMed  Google Scholar 

  57. Mullersteffner HM, Augustin A, Schuber F: Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase. J Biol Chem 271: 23967–23972, 1996

    PubMed  Google Scholar 

  58. Harada N, Santos-Argumedo L, Chang R, Grimaldi JC, Lund FE, Brannan CI, Copeland NG, Jenkins NA, Heath AW, Parkhouse RME, Howard M: Expression and cloning of a cDNA encoding a novel murine B cell activation marker. J Immunol 151: 3111–3118, 1993

    PubMed  Google Scholar 

  59. Koguma T, Takasawa S, Tohgo A, Karasawa T, Furuya Y, Yonekura H, Okamoto H: Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (homologue to human CD38) from islets of Langerhans. Biochim Biophys Acta 1223: 160–162, 1994

    PubMed  Google Scholar 

  60. Nata K, Sugimoto T, Tohgo A, Takamura T, Noguchi N, Matsuoka A, Numakunai T, Shikaina K, Yonekura H, Takasawa S et al.: The structure of the Aplysia kurodai gene encoding ADP-ribosyl cyclase, a second-messenger enzyme. Gene 158: 213–218, 1995

    PubMed  Google Scholar 

  61. Sayle R: RasMol v2.5. Glaxo Research and Development, Greenford, Middlesex, UK, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung Lee, H., Munshi, C. & Graeff, R. Structures and activities of cyclic ADP-ribose, NAADP and their metabolic enzymes. Mol Cell Biochem 193, 89–98 (1999). https://doi.org/10.1023/A:1006916311348

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006916311348

Navigation