Skip to main content
Log in

Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Insulin signaling involves a dynamic cascade of protein tyrosine phosphorylation and dephosphorylation. Most of our understanding of this process comes from studies focusing on tyrosine kinases, which are signal activators. Our knowledge of the role of protein-tyrosine phosphatases (PTPases), signal attenuators, in regulating insulin signal transduction remains rather limited. Protein-tyrosine phosphatase 1B (PTP-1B), the prototypical PTPase, is ubiquitously and abundantly expressed. Work from several laboratories, including our own, has implicated PTP-1B as a negative regulator of insulin action and as a potentially important mediator in the pathogenesis of insulin-resistance and non-insulin dependent diabetes mellitus (NIDDM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kasuga M, Karlsson FA, Kahn CR: Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215: 185–187, 1982

    PubMed  Google Scholar 

  2. Kahn CR, White MF, Shoelson SE, Backer JM, Araki E, Cheatham B, Csermely P, Folli F, Goldstein BJ, Huertas P, Rothenberg PL, Saad MJA, Siddle K, Sun X-J, Wilden PA, Yamada K, Kahn SA: The insulin receptor and its substrate: molecular determinants of early events in insulin action. Rec Prog Horm Res 48: 291–339, 1993

    PubMed  Google Scholar 

  3. Rosen OM: After insulin binds. Science 237: 1452–1458, 1987

    PubMed  Google Scholar 

  4. Cheatham B, Kahn CR: Insulin action and the insulin signaling network. Endo Rev 16: 117–142, 1995

    Google Scholar 

  5. Kahn CR, White MF: The insulin receptor and the molecular mechanism of insulin action. J Clin Invest 82: 1151–1156, 1988

    PubMed  Google Scholar 

  6. Olefsky JM: The insulin receptor. A multifunctional protein. Diabetes 39: 1009–1016, 1990

    PubMed  Google Scholar 

  7. Goldfine ID: The insulin receptor: Molecular biology and transmembrane signaling. Endo Rev 8: 235–255, 1987

    Google Scholar 

  8. Tonks NK, Diltz CD, Fischer EH: Purification of the major protein-tyrosine phosphatase of human placenta. J Biol Chem 263: 6722–6730, 1988

    PubMed  Google Scholar 

  9. Tonks NK, Diltz CD, Fischer EH: Characterization of the major protein-tyrosine phosphatase of human placenta. J Biol Chem 263: 6731–6737, 1988

    PubMed  Google Scholar 

  10. Charbonneau H, Tonks NK, Kumar S, Diltz CD, Harrylock M, Cool DE, Krebs EG, Fisher EH: Human placenta protein-tyrosine phosphatase: Amino-acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci USA 86: 5152–5256, 1990

    Google Scholar 

  11. Streuli M, Drueger NX, Thai T, Tang M, Saito H: Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein-tyrosine phosphatases LCA and LAR. EMBO J 9: 2399–2407, 1990

    PubMed  Google Scholar 

  12. Guan KL, Huan RS, Watson SJ, Geahlen RL, Dixon JE: Cloning and expression of a protein-tyrosine phosphatase. Proc Natl Acad Sci USA 87: 1501–1505, 1991

    Google Scholar 

  13. Guan KL, Dixon JE: Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem 266: 17026–17030, 1991

    PubMed  Google Scholar 

  14. Kenner KA, Hill DE, Olefsky JM, Kusari J: Regulation of protein tyrosine phosphatases by insulin and insulin-like growth factor 1. J Biol Chem 268: 25455–25462, 1993

    PubMed  Google Scholar 

  15. Cicirelli MF, Tonks NK, Diltz CD, Weiel JE, Fischer EH, Krebs EG: Microinjection of a protein-tyrosine phosphatase inhibits insulin action in Xenopus oocytes. Proc Natl Acad Sci USA 87: 5514–5518, 1990

    PubMed  Google Scholar 

  16. Tonks NK, Cicirelli MF, Diltz CD, Krebs EG, Fisher EH: Microinjection of a low Mr-human placenta protein tyrosine phosphatase on induction of meiotic cell division in Xenopus oocytes. Mol Cell Biol 10: 458–463, 1990

    PubMed  Google Scholar 

  17. Kenner KA, Hill DE, Olefsky JM, Kusari J: Protein-tyrosine phosphatase 1B is a negative regulator of insulin and insulin-like growth factor-1-stimulated signaling. J Biol Chem 271: 19810–19816, 1996

    PubMed  Google Scholar 

  18. Ahmad F, Li PM, Meyerovitch J, Goldstein BJ: Osmotic loading of neutralizing anitbodies demonstrates a role for protein tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem 270: 20503–20508, 1996

    Google Scholar 

  19. Liotta AS, Kole HK, Fales HM, Roth J, Bemier M: A synthetic tris-sulfotyrosyl dodecapeptide analogue of the insulin receptor 1146-kinase domain inhibits tyrosine dephosphorylation of the insulin receptor in situ. J Biol Chem 269: 22996–23001, 1994

    PubMed  Google Scholar 

  20. Chen H, Wertheimer SJ, Lin CH, Katz SL, Amrein KE, Bum P, Quon MJ: Protein-tyrosine phosphatases PTP-1B and Syp are modulators of insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. J Biol Chem 272: 8026–8031, 1997

    PubMed  Google Scholar 

  21. Seely BL, Staubs PA, Reichart DR, Berhanu P, Milarski KL, Saltiel AR, Kusari J, Olefsky JM: Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45: 1379–1385, 1996

    PubMed  Google Scholar 

  22. Bandyopadhyay D, Kusari A, Kenner KA, Liu F, Chernoff J, Gustafson TA, Kusari J: Protein tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine phosphorylated in the presence of insulin. J Biol Chem 272: 1639–1645, 1997

    PubMed  Google Scholar 

  23. Pearson RB, Kemp BE: Design and use of peptide substrates for protein kinases. In: T Hunter, BM Setton (eds). Methods in Enzymology. Academic Press, New York, Vol. 200 (Part A ), 1991, pp 62–81

    Google Scholar 

  24. Mayer BJ, Jackson PK, Van Etten RA, Baltimore D: Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo. Mol Cell Biol 12: 609–618, 1992

    PubMed  Google Scholar 

  25. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T: SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science 252: 668–674, 1991

    PubMed  Google Scholar 

  26. Kusari J, Bandhyopadhay D, Kenner K, Kusari A: Activated insulin receptor phosphorlyates and increases the catalytic activity of protein tyrosine phosphatase 1B (PTPase 1B). Diabetes 46 (Suppl. I): (abstr) 204A, 1997

    Google Scholar 

  27. Stein-Gerlach M, Kharitonenkov A, Vogel W, Ali S, Ullrich A: Protein-tyrosine phosphatase 1D modulates its own state of tyrosine phosphorylation. J Biol Chem 270: 24635–24637, 1995

    PubMed  Google Scholar 

  28. Olefsky JM: Pathogenesis of non-insulin-dependent diabetes (type II). In: LJ Degroot, GM Besser, GF Cahill, JC Marshall, DH Nelson, WD Odell, JT Potts, AH Rubenstein Jr, E Steinberger (eds). Endocrinology. 2nd ed. W.B. Saunders Co., Philadelphia, USA, 1989, pp 1369–1388

    Google Scholar 

  29. Kolertman OG, Gray RS, Griffin J, Burstein P, Insel J, Scarlett JA, Olefsky JM: Receptor and post-receptor defects contribute to the insulin resistance in non-insulin-dependent diabetes mellitus. J Clin Invest 68: 957–969, 1981

    PubMed  Google Scholar 

  30. Truglia JA, Livingston JN, Lockwood DH: Insulin resistance: Receptor and post-binding defects in human obesity and non-insulin-dependent diabetes mellitus. Am J Med 79 (Suppl 2B): 13–21, 1985

    Google Scholar 

  31. Freidenberg GR, Henry RR, Klein HH, Reichart HH, Olefsky JM: Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subjects. J Clin Invest 79: 240–250, 1987

    PubMed  Google Scholar 

  32. Sinha MK, Poires WJ, Flickinger EG, Meelheim D, Caro JF: Insulin-receptor kinase activity of adipose tissue from morbidly obese humans with and without NIDDM. Diabetes 36: 620–625, 1987

    PubMed  Google Scholar 

  33. Caro JF, Ittoop O, Pories WJ, Meelheim D, Flickinger EG, Thomas F, Jenquin JF, Silverman JF, Khazanie PG, Sinha MK: Studies on the mechanism of insulin resistance in the liver from humans with non insulin-dependent diabetes. J Clin Invest 78: 249–258, 1986

    PubMed  Google Scholar 

  34. Caro JF, Sinha MK, Raju SM, Ittoop O, Pories WJ, Flickinger EG, Meelheim D, Dohm GL: Insulin receptor kinase in human skeletal muscle from obese subjects with and without non insulin-dependent diabetes. J Clin Invest 79: 1330–1337, 1987

    PubMed  Google Scholar 

  35. Ahmad F, Goldstein BJ: Alterations in specific protein-tyrosine phosphatases accompany insulin resistance of streptozotocin diabetes. Am J Physiol 268: E932–E940, 1995

    PubMed  Google Scholar 

  36. Ahmad F, Goldstein BJ: Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism 44: 1175–1184, 1995

    PubMed  Google Scholar 

  37. Olichon-Berthe C, Hauguel-De Mouzon S, Peraldi P, Van Obberghen E, Le Marchand-Brustel Y: Insulin receptor dephosphorylation by phosphotyrosine phosphatases obtained from insulin-resistant obese mice. Diabetologia 37: 56–60, 1994

    PubMed  Google Scholar 

  38. McGuire MC, Fields RM, Nyomba BL, Raz I, Bogardus C, Tonks NK, Sommercorn J: Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulin resistant humans. Diabetes 40: 939–942, 1991

    PubMed  Google Scholar 

  39. Kusari J, Kenner KA, Suh K-Y, Hill DE, Henry RR: Skeletal muscle protein-tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance. J Clin Invest 93: 1156–1162, 1994

    PubMed  Google Scholar 

  40. Worm D, Vinten J, Staehr P, Henriksen JE, Handberg A, Beck-Nielsen H: Altered basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from NIDDM patients compared with control subjects. Diabetologia 39: 1208–1214, 1996

    PubMed  Google Scholar 

  41. Olefsky JM, Garvey WT, Henry RR, Brillan D, Matthaei S, Freidenberg GR: Cellular mechanisms of insulin resistance in non-insulin-dependent (type II) diabetes. Am J Med 85: 86–105, 1988

    PubMed  Google Scholar 

  42. Frangloni JV, Beahm PH, Shifrin V, Jost CA, Neel BG: The non-transmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68: 545–560, 1992

    PubMed  Google Scholar 

  43. Maegawa H, Ide R, Hasegawa M, Ugi S, Egawa D, Iwanishi M, Kikkawa R, Shigeta Y, Kashiwagi A: Thiazolidine derivatives ameliorate high glucose-induced insulin resistance via the normalization of protein-tyrosine phosphatase activities. J Biol Chem 270: 7724–7730, 1995

    PubMed  Google Scholar 

  44. Faure R, Baquiran G, Bergeron JJ, Posner BI: The dephosphorylation of the insulin and epidermal growth factor receptors. Role of endosome-associated phosphotyrosine phosphatases. J Biol Chem 267: 11215–11221, 1992

    PubMed  Google Scholar 

  45. Burgess JW, Wada I, Ling N, Khan MN, Bergeron JJ, Posner BI: Decrease in beta-subunit phosphotyrosine correlates with internalization and activation of the endosomal insulin receptor kinase. J Biol Chem 267: 10077–10086, 1992

    PubMed  Google Scholar 

  46. Yu H, Chen JK, Feng S, Dalgamo DC, Brauer AW, Schreiber S: Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76: 933–945, 1994

    PubMed  Google Scholar 

  47. Feng S, Chen JK, Yu H, Simon JA, Schreiber S: Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266: 1241–1247, 1994

    PubMed  Google Scholar 

  48. Liu F, Hill DE, Chernoff J: Direct binding of the proline-rich of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130Cas. J Biol Chem 271: 31290–31295, 1996

    PubMed  Google Scholar 

  49. Flint AJ, Tiganis T, Barford D, Tonks NK: Development of ‘substrate-trapping’ mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci USA 94: 1680–1685, 1997

    PubMed  Google Scholar 

  50. Barford D, Flint AJ, Tonks NK: Crystal structure of human protein tyrosine phosphatase 1B. Science 263: 1397–1404, 1994

    PubMed  Google Scholar 

  51. Jia Z, Barford D, Flint AJ, Tonks NK: Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268: 1754–1758, 1995

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byon, J.C., Kusari, A.B. & Kusari, J. Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol Cell Biochem 182, 101–108 (1998). https://doi.org/10.1023/A:1006868409841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006868409841

Navigation