Skip to main content
Log in

Percolation Theory and Network Modeling Applications in Soil Physics

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The application of percolation theory to porous media is closely tied to network models. A network model is a detailed model of a porous medium, generally incorporating pore-scale descriptions of the medium and the physics of pore-scale events. Network models and percolation theory are complementary: while network models have yielded insight into behavior at the pore scale, percolation theory has shed light, at the larger scale, on the nature and effects of randomness in porous media. This review discusses some basic aspects of percolation theory and its applications, and explores work that explicitly links percolation theory to porous media using network models. We then examine assumptions behind percolation theory and discuss how network models can be adapted to capture the physics of water, air and solute movement in soils. Finally, we look at some current work relating percolation theory and network models to soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, P.M.: 1992, Porous Media: Geometry and Transports, Butterworth-Heinemann, Boston.

    Google Scholar 

  • Adler, P.M.: 1994, ‘The method of reconstructed porous media’, Current Topics in the Physics of Fluids 1, 277-306.

    Google Scholar 

  • Alon, U., Drory, A., and Balberg, I.: 1990, ‘Systematic derivation of percolation thresholds in continuum systems’, Physical Review A 42, 4634-4638.

    Google Scholar 

  • Ambegaokar, V., Halperin, B.I., and Langer, J.S.: 1971, ‘Hopping conductivity in disordered systems’, Physical Review B 4, 2612-2620.

    Google Scholar 

  • Androutsopoulos, G.P. and Mann, R.: 1979, ‘Evaluation of mercury porosimeter experiments using a network pore structure model’, Chemical Engineering Science 34, 1203-1212.

    Google Scholar 

  • Auzerais, F.M., Dunsmuir, J., Ferréol, B.B., Martys, N., Olson, J., Ramakrishnan, T.S., Rothman, D.H., and Schwartz, L.M.: 1996, ‘Transport in sandstone: A study based on three dimensional microtomography’, Geophysical Research Letters 23, 705-708.

    Google Scholar 

  • Balberg, I.: 1986a, ‘Excluded-volume explanation of Archie's law’, Physical Review B 33, 3618- 3620.

    Google Scholar 

  • Balberg, I.: 1986b, ‘Connectivity and conductivity in 2-D and 3-D fracture systems’, in R. Englman and Z. Jaeger (eds.), Proceedings of the International Conference on Fragmentation, Form and Flow in Fractured Media, Annals of the Israel Physical Society 8, Adam Hilger, Bristol, pp. 89-101.

  • Balberg, I.: 1987, ‘Recent developments in continuum percolation’, Philosophical Magazine 56, 991-1003.

    Google Scholar 

  • Balberg, I., Anderson, C.H., Alexander, S., and Wagner, N.: 1984, ‘Excluded volume and its relation to the onset of percolation’, Physical Review B 30, 3933-3943.

    Google Scholar 

  • Balberg, I. and Binenbaum, N.: 1985, ‘Cluster structure and conductivity of three-dimensional continuum systems’, Physical Review A 31, 1222-1225.

    Google Scholar 

  • Barton, C.C.: 1995, ‘Fractal analysis of scaling and spatial clustering of fractures’, in C.C. Barton and P.R. La Pointe (eds.), Fractals in the Earth Sciences, Plenum Press, New York, pp. 141-178.

    Google Scholar 

  • Baver, L.D.: 1938, ‘Soil permeability in relation to non-capillary porosity’, Soil Science Society of America Proceedings 3, 52-56.

    Google Scholar 

  • Bear, J.: 1972, Dynamics of Fluids in Porous Media, American Elsevier, New York.

    Google Scholar 

  • Berkowitz, B.: 1994,‘Modelling flow and contaminant transport in fractured media’, in Y. Corapcioglu (ed.), Advances in Porous Media, Vol. 2, Elsevier Science Publishers, New York, pp. 395-449.

    Google Scholar 

  • Berkowitz, B.: 1995, ‘Analysis of fracture network connectivity using percolation theory’, Mathematical Geology 27(4), 467-483.

    Google Scholar 

  • Berkowitz, B. and Balberg, I.: 1992, ‘Percolation approach to the problem of hydraulic conductivity in porous media’, Transport in Porous Media 9, 275-286.

    Google Scholar 

  • Berkowitz, B. and Balberg, I.: 1993, ‘Percolation theory and its application to groundwater hydrology’, Water Resources Research 29, 775-794.

    Google Scholar 

  • Berkowitz, B. and Braester, C.: 1991, ‘Dispersion in sub-representative elementary volume fracture networks: Percolation theory and random walk approaches’, Water Resources Research 27, 3159- 3164.

    Google Scholar 

  • Birovljev, A., Furuberg, L., Feder, J., Jssang, T., Måly, K.J., and Aharony, A.: 1991, ‘Gravity invasion percolation in two dimensions: experiments and simulations’, Physical Review Letters 67, 584- 587.

    Google Scholar 

  • Blunt, M., King, M.J., and Scher, H.: 1992, ‘Simulation and theory of two-phase flow in porous media’, Physical Review A 46, 7680-7699.

    Google Scholar 

  • Blunt, M. and Scher, H.: 1995, ‘Porelevel modeling of wetting’, Physical Review E 52, 6387-6403.

    Google Scholar 

  • Bouwer, H.: 1966, ‘Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis’, Water Resources Research 2, 729-738.

    Google Scholar 

  • Bretz, R.E., Specter, R.M., and Orr, F.M. Jr.: 1988, ‘Effect of pore structure on miscible displacement in laboratory cores’, Society of Petroleum Engineers Reservoir Engineering 3, 857-866.

    Google Scholar 

  • Broadbent, S.R. and Hammersley, J.M.: 1957, ‘Percolation processes. I. Crystals and Mazes’, Proceedings of the Cambridge Philosophical Society 53, 629-641.

    Google Scholar 

  • Brooks, R.H. and Corey, A.T.: 1964, ‘Hydraulic properties of porous media’, Hydrological Paper 3, Colorado State University, Fort Collins.

    Google Scholar 

  • Bryant, S.L., King, P.R., and Mellor, D.W.: 1993, ‘Network model evaluation of permeability and spatial correlation in a real random sphere packing’, Transport in Porous Media 11, 53-70.

    Google Scholar 

  • Bunde, A. and Havlin, S.: 1991, ‘Percolation I’, in A. Bunde and S. Havlin (eds.), Fractals and Disordered Systems, Springer-Verlag, Berlin, pp. 51-96.

    Google Scholar 

  • Campbell, G. S.: 1974, ‘A simple method for determining unsaturated conductivity from moisture retention data’, Soil Science 117, 311-314.

    Google Scholar 

  • Chandler, R., Koplik, J., Lerman, K., and Willemsen, J.F.: 1982, ‘Capillary displacement and percolation in porous media’, Journal of Fluid Mechanics 119, 249-267.

    Google Scholar 

  • Charlaix, E., Guyon, E., and Rivier, N.: 1984, ‘A criterion for percolation threshold in a random array of plates’, Solid State Communications 50, 999-1002.

    Google Scholar 

  • Charlaix, E., Guyon, E., and Roux, S.: 1987, ‘Permeability of a random array of fractures of widely varying apertures’, Transport in Porous Media 2, 31-43.

    Google Scholar 

  • Chatzis, I. and Dullien, F.A.L.: 1977, ‘Modelling pore structures by 2-D and 3-D networks with application to sandstones’, Canadian Journal of Petroleum TechnologyJan.-Mar., 97-108.

  • Chatzis, I. and Dullien, F.A.L.: 1981, ‘Mercury porosimetry curves of sandstones, Mechanisms of mercury penetration and withdrawal’, Powder Technology 29, 117-125.

    Google Scholar 

  • Chatzis, I. and Dullien, F.A.L.: 1985, ‘The modeling of mercury porosimetry and the relative permeability of mercury in sandstones using percolation theory’, Int. Chemical Engineering 25, 47-66.

    Google Scholar 

  • Chatzis, I. and Morrow, N.R.: 1981, ‘Correlation of capillary number relationships for sandstones’, SPE paper 10114, 56th Ann. Fall Tech. Conf. and Exhib., San Antonio, TX, Oct. 5-7.

    Google Scholar 

  • Chatzis, I., Morrow, N.R., and Lim, H.T.: 1983, ‘Magnitude and detailed structure of residual oil saturation’, Society of Petroleum Engineers Journal 23, 311-326.

    Google Scholar 

  • Cieplak, M. and Robbins, M.O.: 1990, ‘Influence of contact angle on quasistatic fluid invasion of porous media’, Physical Review B 41, 508-521.

    Google Scholar 

  • Cox, M.A.A.: 1983, ‘Analysis of a moisture characteristic curve employing a crystalline lattice of capillary pores’, Journal of Soil Science 34, 649-658.

    Google Scholar 

  • Cushman, J.H.: 1991, ‘On diffusion in fractal porous media’, Water Resources Research 27, 643-644.

    Google Scholar 

  • Dias, M.M. and Payatakes, A.C.: 1986, ‘Network models for two-phase flow in porous media, Part 2. Motion of oil ganglia’, Journal of Fluid Mechanics 164, 337-358.

    Google Scholar 

  • Dias, M.M. and Wilkinson, D.: 1986, ‘?’, Journal of Physics A 19, 3131–-.

    Google Scholar 

  • Diaz, C.E., Chatzis, I., and Dullien, F.A.L.: 1987, ‘Simulation of capillary pressure curves using bond correlated site percolation on a simple cubic network’, Transport in Porous Media 2, 215-240.

    Google Scholar 

  • Dong, M. and Chatzis, I.: 1995, ‘The imbibition and flow of a wetting liquid along the corners of a square capillary tube’, Journal of Colloid and Interface Science 172, 278-288.

    Google Scholar 

  • Doyen, P.M.: 1988, ‘Permeability, conductivity, and pore geometry of sandstone’, Journal of Geophysical Research 93(B7), 7729-7740.

    Google Scholar 

  • Drory, A., Balberg, I., Alon, U., and Berkowitz, B.: 1991, ‘Analytic derivation of percolation thresholds in anisotropic systems of permeable objects’, Physical Review A 43, 6604-6612.

    Google Scholar 

  • Dullien, F.A.L.: 1992, Porous Media: Fluid Transport and Pore Structure(2nd ed.), Academic Press, San Diego.

    Google Scholar 

  • Dullien, F.A.L., Zarcone, C., Macdonald, I.F., Collins, A., and Bochard, R.D.E.: 1989, ‘The effects of surface roughness on the capillary pressure curves and the heights of capillary rise in glass bead packs’, Journal of Colloid and Interface Science 127, 362-372.

    Google Scholar 

  • Eden, M.: 1961, ‘A two-dimensional growth model’, in J. Neyman (ed.), Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics, and Probability, Vol. 4, pp. 223-239, University of California Press, Berkeley.

    Google Scholar 

  • Ewing, R.P. and Gupta, S.C.: 1993a, ‘Modeling percolation properties of random media using a domain network’, Water Resources Research 29, 3169-3178.

    Google Scholar 

  • Ewing, R.P. and Gupta, S.C.: 1993b, ‘Percolation and permeability in partially structured networks’, Water Resources Research 29, 3179-3188.

    Google Scholar 

  • Ewing, R.P. and Gupta, S.C.: 1994, ‘Pore-scale network modeling of compaction and filtration during surface sealing’, Soil Science Society of America Journal 58, 712-720.

    Google Scholar 

  • Farrell, D.A. and Larson, W.E.: 1972, ‘Modeling the pore structure of porous media’, Water Resources Research 8, 699-706.

    Google Scholar 

  • Fatt, I.: 1956a, ‘The network model of porous media, I. Capillary pressure characteristics’, Petroleum Transactions AIME 207, 144-159.

    Google Scholar 

  • Fatt, I.: 1956b, ‘The network model of porous media, II. Dynamic properties of a single size tube network’, Petroleum Transactions AIME 207, 160-163.

    Google Scholar 

  • Fatt, I.: 1956c, ‘The network model of porous media, III. Dynamic properties of networks with tube radius distribution’, Petroleum Transactions AIME 207, 164-177.

    Google Scholar 

  • Feng, S., Halperin, B.I., and Sen, P.N.: 1987, ‘Transport properties of continuum systems near the percolation threshold’, Physical Review B 35, 197-214.

    Google Scholar 

  • Ferrand, L.A. and Celia, M.A.: 1992, ‘The effect of heterogeneity on the drainage capillary pressure-saturation relation’, Water Resources Research 28, 859-870.

    Google Scholar 

  • Ferrand, L.A., Celia, M.A., and Soll, W.E.: 1990, ‘Percolation-based models for pore-to-lab scale calculations in multifluid porous media’, in J.H. Cushman (ed.), Dynamics of Fluids in Hierarchical Porous Media, 463483, Academic Press, San Diego, California.

    Google Scholar 

  • Fisher, M.E.: 1961, ‘Critical probabilities for cluster size and percolation problems’, Journal of Mathematical Physics 2, 620-627.

    Google Scholar 

  • Flory, P.J.: 1941, ‘Molecular size distribution in three-dimensional polymers’, Journal of the American Chemical Society 63, 3083-3100.

    Google Scholar 

  • Frette, V., Feder, J., Jssang, T., and Meakin, P.: 1992, ‘Buoyancy-driven fluid migration in porous media’, Physical Review Letters 68, 3164-3167.

    Google Scholar 

  • Friedman, S.P. and Seaton, N.A.: 1996, ‘On the transport properties of anisotropic networks of capillaries’, Water Resources Research 32, 339-347.

    Google Scholar 

  • Gladden, L.F., Hollewand, M.P. and Alexander, P.: 1995, ‘Characterization of structural inhomo-geneities in porous media’, American Institute of Chemical Engineers Journal 41, 894-906.

    Google Scholar 

  • Glasbey, C.A., Horgan, G.W., and Darbyshire, J.F.: 1991, ‘Image analysis and three-dimensional modelling of pores in soil aggregates’, Journal of Soil Science 42, 479-486.

    Google Scholar 

  • Glass, R.J., Parlange, J.Y., and Steenhuis, T.S.: 1989a, ‘Wetting front instability I: Theoretical study and dimensional analysis’, Water Resources Research 25, 1187-1194.

    Google Scholar 

  • Glass, R.J., Steenhuis, T.S., and Parlange, J.Y.: 1989b, ‘Wetting front instability II: Experimental determination of relationships between system parameters and two dimensional unstable flow field behavior in initially dry porous media’, Water Resources Research 25, 1195-1207.

    Google Scholar 

  • Golden, J.M.: 1980, ‘Percolation theory and models of unsaturated porous media’, Water Resources Research 16, 201-209.

    Google Scholar 

  • Haines, W.B.: 1930, ‘Studies in the physical properties of soil, Part V’, Journal of Agricultural Science 20, 97-116.

    Google Scholar 

  • Halperin, B.I., Feng, S., and Sen, P.N.: 1985, ‘Differences between lattice and continuum percolation exponents’, Physical Review Letters 54, 2391-2394.

    Google Scholar 

  • Hammersley, J.M.: 1963, ‘A Monte Carlo solution of percolation in the cubic crystal’, in B. Adler, S. Fernbach and M. Rotenberg (eds.), Methods in Computations Physics, Vol. 1: Statistical Physics, Academic Press, New York.

    Google Scholar 

  • Hammersley, J.M. and Welsh, D.J.A.: 1980, ‘Percolation theory and its ramifications’, Contemporary Physics 21, 593-605.

    Google Scholar 

  • Hansen, A., Hinrichsen, E.L., and Stauffer, D.: 1993, ‘Percolation in layered media - a conductivity approach’, Transport in Porous Media 11, 45-52.

    Google Scholar 

  • Havlin, S. and Bunde, A.: 1991, ‘Percolation II’, in A. Bunde and S. Havlin (eds.), Fractals and Disordered Systems, pp. 97-150, Springer-Verlag, Berlin.

    Google Scholar 

  • Heiba, A.A., Sahimi, M., Scriven, L.E., and Davis, H.T.: 1982, ‘Percolation theory of two-phase relative permeability’, Paper SPE 11015, 57th Ann. Fall Tech. Conf. Exhib. of the Soc. Petr. Eng. of the AIME, Sept. 26-29, New Orleans. (also in Society of Petroleum Engineers Reservoir Engineering 7, 123-132, 1992).

  • Heiba, A.A., Davis, H.T., and Scriven, L.E.: 1984, ‘Statistical network theory of three-phase relative permeabilities’, Paper SPE/DOE 12690, SPE/DOE 4th Symp. Enhanced Oil Recovery, Apr. 15-18, Tulsa.

  • Hillel, D.: 1993, ‘Unstable flow: a potentially significant mechanism of water and solute transport to groundwater’, in D. Russo and G. Dagan (eds.), Water Flow and Solute Transport in Soils, pp. 123-135, Springer-Verlag, Berlin.

    Google Scholar 

  • Hirsch, L.M. and Thompson, A.H.: 1994, ‘Size-dependent scaling of capillary invasion including buoyancy and pore size distribution effects’, Physical Review E 50, 2069-2086.

    Google Scholar 

  • Hirsch, L.M. and Thompson, A.H.: 1995, ‘Minimum saturations and buoyancy in secondary migration’, American Association of Petroleum Geologists 79, 696-710.

    Google Scholar 

  • Homer, V.J., Jardine, P.M., Luxmoore, R.J., and Jenssen, P.: 1994, ‘Mapping soil pore heterogeneities for percolation fluid/solute transport models’, Abstract H12A03 (page 147), April 19th EOS supplement: 1994 Spring Meeting of the American Geophysical Union, Baltimore.

  • Homsy, G.M.: 1987, ‘Viscous fingering in porous media’, Annual Reviews Fluid Mechanics 19, 271-311.

    Google Scholar 

  • Ioannidis, M.A. and Chatzis, I.: 1993, ‘Network modelling of pore structure and transport properties of porous media’, Chemical Engineering Science 48, 951-972.

    Google Scholar 

  • Ioannidis, M.A., Chatzis, I., and Sudicky, E.A.: 1993, ‘The effect of spatial correlations on the accessibility characteristics of three-dimensional cubic networks as related to drainage displacements in porous media’, Water Resources Research 29, 1777-1785.

    Google Scholar 

  • Ioannidis, M.A., Chatzis, I., and Dullien, F.A.L.: 1996, ‘Macroscopic percolation model of immiscible displacement: Effects of buoyancy and spatial structure’, Water Resources Research 32, 3297- 3310.

    Google Scholar 

  • Jerauld, G.R., Hatfield, J.C., Scriven, L.E., and Davis, H.T.: 1984a, ‘Percolation and conduction on Voronoi and triangular networks: a case study in topological disorder’, Journal of Physics C 17, 1519-1529.

    Google Scholar 

  • Jerauld, G.R., Scriven, L.E., and Davis, H.T.: 1984b, ‘Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder’, Journal of Physics C 17, 3429-3439.

    Google Scholar 

  • Jerauld, G.R. and Salter, S.J.: 1990, ‘The effect of pore-structure on hysteresis in relative permeability and capillary pressure: porelevel modeling’, Transport in Porous Media 5, 103-151.

    Google Scholar 

  • Kantzas, A. and Chatzis, I.: 1988, ‘Network simulations of relative permeability curves using a bond correlated-site percolation model of pore structure’, Chemical Engineering Communications 69, 191-214.

    Google Scholar 

  • Katz, A.J. and Thompson, A.H.: 1985, ‘Fractal sandstone pores: Implications for conductivity and pore formation’, Physical Review Letters 54, 1325-1328.

    Google Scholar 

  • Katz, A.J. and Thompson, A.H.: 1986, ‘Quantitative prediction of permeability in porous rock’, Physical Review B 34, 8179-8181.

    Google Scholar 

  • Kiriakidis, D.G., Neale, G.H. and Mitsoulis, E.: 1990, ‘Numerical simulations of radial displacement of a wetting fluid by a non-wetting fluid in a porous medium’, Journal Physics A.: Math. Gen. 23, 5089-5094.

    Google Scholar 

  • Kiriakidis, D.G., Mitsoulis, E., and Neale, G.H.: 1991, ‘Linear displacement of a wetting fluid by an immiscible non-wetting fluid in a porous medium: a predictive algorithm’, Canadian Journal of Chemical Engineering 69, 557-563.

    Google Scholar 

  • Kirkpatrick, S.: 1971, ‘Classical transport in disordered media: scaling and effective-medium theories’, Physical Review Letters 27, 1722-1725.

    Google Scholar 

  • Kirkpatrick, S.: 1973, ‘Percolation and conduction’, Reviews of Modern Physics 45, 574-588.

    Google Scholar 

  • Koiller, B., Ji, H., and Robbins, M.O.: 1992, ‘Fluid wetting properties and the invasion of square networks’, Physical Review B 45, 7762-7767.

    Google Scholar 

  • Koplik, J.: 1982, ‘Creeping flow in two-dimensional networks’, Journal of Fluid Mechanics 119, 219-247.

    Google Scholar 

  • Koplik, J., Redner, S., and Wilkinson, D.: 1988, ‘Transport and dispersion in random networks with percolation disorder’, Physical Review A: Math. Gen. 37, 2619-2636.

    Google Scholar 

  • Korvin, G.: 1992, ‘A percolation model for the permeability of kaolinite-bearing sandstones’, Geophysical Transactions 37, 177-209.

    Google Scholar 

  • Ksenzhek, O.S.: 1963, ‘Capillary equilibrium in porous media with intersecting pores’, Russian Journal of Physical Chemistry 37, 691-694.

    Google Scholar 

  • Kueper, B.H. and McWhorter, D.B.: 1992, ‘The use of macroscopic percolation theory to construct large-scale capillary pressure curves’, Water Resources Research 28, 2425-2436.

    Google Scholar 

  • Kwiecien, M.J., Macdonald, I.F., and Dullien, F.A.L.: 1990, ‘Three-dimensional reconstruction of porous media from serial section data’, Journal of Microscopy 159, 343-359.

    Google Scholar 

  • Laliberte, G.E. and Brooks, R.H.: 1967, ‘Hydraulic properties of disturbed soil materials affected by porosity’, Soil Science Society of America Proceedings 31, 451-454.

    Google Scholar 

  • Lane, A., Shah, N., and Conner, Jr., W.C.: 1986, ‘Measurement of the morphology of high-surface-area solids: Porosimetry as a percolation process’, Journal of Colloid and Interface Science 109, 235-242.

    Google Scholar 

  • Larson, R.G., Scriven, L.E., and Davis, H.T.: 1977, ‘Percolation theory of residual phases in porous media’, Nature 268, 409-413.

    Google Scholar 

  • Larson, R.G., Scriven, L.E., and Davis, H.T.: 1981, ‘Percolation theory of two phase flow in porous media’, Chemical Engineering Science 36, 57-73.

    Google Scholar 

  • Leclerc, D.F. and Neale, G.H.: 1988, ‘Monte Carlo simulations of radial displacement of oil from a wetted porous medium: fractals, viscous fingering and invasion percolation’, Journal of Physics A: Math. Gen. 21, 2979-2994.

    Google Scholar 

  • Lenormand, R.: 1987, ‘Statistical physics and immiscible displacements through porous media’, in J.R. Banavar, J. Koplik and K.W. Winkler (eds.), Physics and Chemistry of Porous Media II. AIP Conference Proceedings no. 154, AIP, New York.

    Google Scholar 

  • Lenormand, R.: 1990, ‘Liquids in porous media’, Journal of Physics: Condensed Matter 2, SA79-88.

    Google Scholar 

  • Lenormand, R. and Bories: 1980, ‘Mécanique des fluides’, C. R. Acad. Sc. Paris 291B, 279-282.

    Google Scholar 

  • Lenormand, R., Touboul, E. and Zarcone, C.: 1988, ‘Numerical models and experiments on immiscible displacements in porous media’, Journal of Fluid Mechanics 189, 165-187.

    Google Scholar 

  • Levine, S., Reed, P., Shutts, G., and Neale, G.: 1977, ‘Some aspects of wetting/dewetting of a porous medium’, Powder Technology 17, 163-181.

    Google Scholar 

  • Li, Y., Laidlaw, W.G., and Wardlaw, N.C.: 1986, ‘Sensitivity of drainage and imbibition to pore structures as revealed by computer simulation of displacement process’, Advances in Colloid Interface Science 26, 1-68.

    Google Scholar 

  • Lin, C. and Cohenm, M.H.: 1982, ‘Quantitative methods for microgeometric modeling’, Journal of Applied Physics 53, 4152-4165.

    Google Scholar 

  • Luxmoore, R.J. and Ferrand, L.A.: 1993, ‘Towards pore-scale analysis of preferential flow and chemical transport’, in D. Russo and G. Dagan (eds.),Water Flow and Solute Transport in Soils, pp. 45-60. Springer-Verlag, Berlin.

    Google Scholar 

  • Maier, R. and Laidlaw, W.G.: 1990, ‘Fluid percolation in bond-site size-correlated three-dimensional networks’, Transport in Porous Media 5, 421-428.

    Google Scholar 

  • Mandelbrot, B.B.: 1983, The fractal geometry of nature, W.H. Freeman and Co., New York.

    Google Scholar 

  • Mann, R., Androutsopoulos, G.P., and Golshan, H.: 1981, ‘Application of a stochastic network pore model to oil-bearing rock with observations relevant to oil recovery’, Chemical Engineering Science 36, 337-346.

    Google Scholar 

  • Marshall, T.J.: 1958, ‘A relation between permeability and size distribution of pores’, Journal of Soil Science 9, 1-8.

    Google Scholar 

  • Meakin, P. and Deutch, J.M.: 1986, ‘The formation of surfaces by diffusion limited annihilation’, Journal of Chemical Physics 85, 2320-2325.

    Google Scholar 

  • Meijering, J.L.: 1953, ‘Interface area, edge length, and number of vertices in crystal aggregates with random nucleation’, Philips Research Report 8, 270-290 (Report 218).

    Google Scholar 

  • Mohanty, K.K, Davis, H.T., and Scriven, L.E.: 1980, ‘Physics of oil entrapment in water-wet rock’, Paper SPE 9406, 55th Ann. Tech. Conf. and Exhib. Soc. Petr. Eng., Dallas, Texas, Sept. pp. 21-24.

    Google Scholar 

  • Mualem, Y.: 1976, ‘A new model for predicting the hydraulic conductivity of unsaturated porous media’, Water Resources Research 12, 513-522.

    Google Scholar 

  • Mualem, Y. and Dagan, G.: 1975, ‘A dependent domain model of capillary hysteresis’, Water Resources Research 11, 452-460.

    Google Scholar 

  • Ng, K.M. and Payatakes, A.C.: 1980, ‘Stochastic simulation of the motion, break-up and stranding of oil ganglia in water-wet granular porous media during immiscible displacement’, American Institute of Chemical Engineers Journal 26, 419-429.

    Google Scholar 

  • Nicholson, D.: 1968, ‘Capillary models for porous media, Part 2. Sorption desorption hysteresis in three dimensional networks’, Transactions of the Faraday Society 64, 3416-3424.

    Google Scholar 

  • Parlange, J.Y. and Hill, D.E.: 1976, ‘Theoretical analysis of wetting front instability in soils’, Soil Science 122, 236-239.

    Google Scholar 

  • Paterson, L.: 1984, ‘Diffusion-limited aggregation and two-fluid displacements in porous media’, Physical Review Letters 52, 1621-1624.

    Google Scholar 

  • Pathak, P., Davis, H.T., and Scriven, L.E.: 1982, ‘Dependence of residual non-wetting liquid on pore topology’, Paper SPE 11016, presented at the 57th Ann. Tech. Conf. and Exhib. of the Soc. Petr. Eng. of AIME, New Orleans, Sept. 26-29.

  • Prat, M.: 1993, ‘Percolation model of drying under isothermal conditions in porous media’, International Journal of Multiphase Flow 19, 691-704.

    Google Scholar 

  • Raats, P.A.C.: 1973, ‘Unstable wetting fronts in uniform and nonuniform soils’, Soil Science Society of America Proceedings 37, 681-685.

    Google Scholar 

  • Renault, P.: 1991, ‘The effect of spatially correlated blocking-up of some bonds or nodes of a network on the percolation threshold’, Transport in Porous Media 6, 451-468.

    Google Scholar 

  • Robinson, P.C.: 1983, ‘Connectivity of fracture systems - a percolation theory approach’, Journal of Physics A: Math. Gen. 16, 605-614.

    Google Scholar 

  • Robinson, P.C.: 1984, ‘Numerical calculations of critical densities for lines and planes’, Journal of Physics A.: Math. Gen. 17, 2823-2830.

    Google Scholar 

  • Rose, W.D.: 1957, ‘Studies of waterflood performance, III. Use of network models’, Illinois State Geol. Survey Circ. 237.

  • Rose, W.D., Carpenter, D.W., and Witherspoon, P.A.: 1956, ‘Discussion [of Fatt's papers]’, Petroleum Transactions AIME 207, 179-181.

    Google Scholar 

  • Ross, B.: 1986, ‘Dispersion in fractal fracture networks’, Water Resources Research 22, 823-827.

    Google Scholar 

  • Rosso, M., Gouyet, J.F., and Sapoval, B.: 1986, ‘Gradient percolation in three dimensions and relation to diffusion fronts’, Physical Review Letters 57, 3195-3198.

    Google Scholar 

  • Royal Statistical Society: 1954, ‘Symposium on Monte Carlo Methods’, Journal of the Royal Statistical Society B 16, 23-75.

    Google Scholar 

  • Saffman, P.G.: 1986, ‘Viscous fingering in Hele-Shaw cells’, Journal of Fluid Mechanics 173, 73-94.

    Google Scholar 

  • Saffman, P.G. and Taylor, G.I.: 1958, ‘The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid’, Proceedings of the Royal Society of London A245, 312-331.

    Google Scholar 

  • Sahimi, M.: 1984, Transport and dispersion in porous media and related aspects of petroleum recovery, Unpublished PhD thesis, University of Minnesota, Minneapolis, Minnesota.

    Google Scholar 

  • Sahimi, M.: 1995, Flow and Transport in Porous Media and Fractured Rock, VCH, Weinheim.

    Google Scholar 

  • Sahimi, M. and Yortsos, Y.C.: 1985, ‘Pattern formation in viscous fingering: a diffusion-limited aggregation approach’, Physical Review A 32, 3762-3764.

    Google Scholar 

  • Sahimi, M.: 1987, ‘Hydrodynamic dispersion near the percolation threshold: scaling and probability densities’, Journal of Physics A: Math. Gen. 20, L1293-L1298.

    Google Scholar 

  • Sahimi, M. and Imdakm, A.O.: 1988, ‘The effect of morphological disorder on hydrodynamic dispersion in flow through porous media’, Journal of Physics A: Math. Gen. 21, 3833-3870.

    Google Scholar 

  • Scott, G.J.T., Webster, R., and Nortcliff, S.: 1988a, ‘The topology of pore structure in crack clay soil I. The estimation of numerical density’, Journal of Soil Science 39, 303-314.

    Google Scholar 

  • Scott, G.J.T., Webster, R., and Nortcliff, S.: 1988b, ‘The topology of pore structure in crack clay soil II. Connectivity density and its estimation’, Journal of Soil Science 39, 315-326.

    Google Scholar 

  • Shante, V. and Kirkpatrick, S.: 1971, ‘An introduction to percolation theory’, Advances in Physics 20, 325-357.

    Google Scholar 

  • Silliman, S.E.: 1990, ‘The influence of grid discretization on the percolation probability within discrete random fields’, Journal of Hydrology 113, 177-191.

    Google Scholar 

  • Simon, R. and Kelsey, F.J.: 1971, ‘The use of capillary tube networks in reservoir performance studies, I. Equal viscosity miscible displacements’, Society of Petroleum Engineers Journal 11, 99-112.

    Google Scholar 

  • Simon, R. and Kelsey, F.J.: 1972, ‘The use of capillary tube networks in reservoir performance studies, II. Effect of heterogeneity and mobility on miscible displacement efficiency’, Society of Petroleum Engineers Journal 12, 345-351.

    Google Scholar 

  • Stanley, H.E.: 1977, ‘Cluster shapes at the percolation threshold: an effective cluster dimensionality and its connection with critical-point exponents’, Journal of Physics A: Math. Gen. 10, L211- L220.

    Google Scholar 

  • Stauffer, D. and Aharony, A.: 1992, Introduction to Percolation Theory(2nd ed.), Taylor & Francis, London.

    Google Scholar 

  • Steele, D.D. and Nieber, J.L.: 1994a, ‘Network modeling of diffusion coefficients for porous media, I. Theory and model development’, Soil Science Society of America Journal 58, 1337-1345.

    Google Scholar 

  • Steele, D.D. and Nieber, J.L.: 1994b, ‘Network modeling of diffusion coefficients for porous media, II. Simulations, Soil Science Society of America Journal 58, 1346-1354.

    Google Scholar 

  • Stockmayer, W.H.: 1943, ‘Theory of molecular size distribution and gel formation in branched-chain polymers’, Journal of Chemical Physics 11, 45-55.

    Google Scholar 

  • Sutanto, E.: 1991, Liquid distributions in porous media, PhD thesis, University of Minnesota, Minneapolis, Minnesota, 283 pp.

    Google Scholar 

  • Thompson, A.H., Katz, A.J., and Krohn, C.E.: 1987, ‘The microgeometry and transport properties of sedimentary rock’, Advances in Physics 36, 625-694.

    Google Scholar 

  • Toledo, P.G., Scriven, L.E., and Davis, H.T.: 1989, ‘Pore-space statistics and capillary pressure curves from volume-controlled porosimetry’, Paper SPE 19618, 64th Ann. Tech. Conf. and Exhib. of the SPE, Oct. 8-11, San Antonio, Texas.

    Google Scholar 

  • Toledo, P.G., Novy, R.A., Davis, H.T., and Scriven, L.E.: 1990, ‘Hydraulic conductivity of porous media at low water content’, Soil Science Society of America Journal 54, 673-679.

    Google Scholar 

  • Topp, G.C.: 1971, ‘Soil-water hysteresis-the domain theory extended to pore interaction conditions’, Soil Science Society of America Proceedings 35, 219-225.

    Google Scholar 

  • Torelli, L.: 1972, ‘Computer simulation of the dispersion phenomena occurring during flow through porous media, using a random maze model’, Pure and Applied Geophysics 96, 75-88.

    Google Scholar 

  • Torelli, L. and Scheidegger, A.E.: 1971, ‘Random maze models of flow through porous media’, Pure and Applied Geophysics 89, 32-44.

    Google Scholar 

  • van Genuchten, M.Th.: 1980, ‘A closed-form equation for predicting the hydraulic conductivity of unsaturated soils’, Soil Science Society of America Journal 44, 892-898.

    Google Scholar 

  • Wang, J.S.Y. and Narasimhan, T.N.: 1992, ‘Distributions and correlations of hydrologic parameters of rocks and soils’, in M.Th. van Genuchten, F.J. Leij and L.J. Lund (eds.), Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, pp. 169-176. University of California, Riverside.

    Google Scholar 

  • Wardlaw, N.C., Li, Y., and Forbes, D.: 1987, ‘Pore-throat size correlation from capillary pressure curves’, Transport in Porous Media 2, 597-614.

    Google Scholar 

  • Washburn, E.W.: 1921, ‘Note on a method of determining the distribution of pore sizes in a porous material’, Proceedings of the National Academy of Science 7, 115-116.

    Google Scholar 

  • Wheatcraft, S.W. and Tyler, S.W.: 1988, ‘An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry’, Water Resources Research 24, 566-578.

    Google Scholar 

  • Wilkinson, D.: 1986, ‘Percolation effects in immiscible displacement’, Physical Review A 34, 1380- 1391.

    Google Scholar 

  • Wilkinson, D. and Barsony, M.: 1984, ‘Monte Carlo study of invasion percolation clusters in two and three dimensions’, Journal of Physics A: Math. Gen. 17, L129-L135.

    Google Scholar 

  • Wilkinson, D. and Willemsen, J.F.: 1983, ‘Invasion percolation: a new form of percolation theory’, Journal of Physics A: Math. Gen. 16, 3365-3376.

    Google Scholar 

  • Winterfeld, P.H., Scriven, L.E., and Davis, H.T.: 1981, ‘Percolation and conductivity of random Two-dimensional composites’, Journal of Physics C 14, 2361-2376.

    Google Scholar 

  • Witten, T.A. and Sander, L.M.: 1983, ‘Diffusion-limited aggregation’, Physical Review B 27, 5686- 5697.

    Google Scholar 

  • Wong, P.Z.: 1984, ‘The statistical physics of sedimentary rock’, Physics Today 41, 24-32.

    Google Scholar 

  • Yanuka, M., Dullien, F.A.L., and Elrick, D.E.: 1984, ‘Serial sectioning digitization of porous media for two and three-dimensional analysis and reconstruction’, Journal of Microscopy 135, 159-168.

    Google Scholar 

  • Yanuka, M., Dullien, F.A.L., and Elrick, D.E.: 1986, ‘Percolation processes and porous media, I. Geometrical and topological model of porous media using a three-dimensional joint pore size distribution’, Journal of Colloid and Interface Science 112, 24-41.

    Google Scholar 

  • Yanuka, M.: 1989a, ‘Percolation processes and porous media, II. Computer calculations of percolation probabilities and cluster formation’, Journal of Colloid and Interface Science 127, 35-47.

    Google Scholar 

  • Yanuka, M.: 1989b, ‘Percolation processes and porous media, III. Prediction of the capillary hysteresis loop from geometrical and topological information of pore space’, Journal of Colloid and Interface Science 127, 48-57.

    Google Scholar 

  • Yanuka, M.: 1992, ‘Percolation theory approach to transport phenomena in porous media’, Transport in Porous Media 7, 265-282.

    Google Scholar 

  • Yortsos, Y.C., Satik, C., Bacri, J.C., and Salin, D.: 1993, ‘Large-scale percolation theory of drainage’, Transport in Porous Media 10, 171-1195.

    Google Scholar 

  • Yuan, H.H. and Swanson, B.F.: 1986, ‘Resolving pore space characteristics by rate-controlled porosimetry’, SPE/DOE paper 14892, Fifth SPE/DOE Symp. Enhanced Oil Recovery, Tulsa, Oklahoma, April 20-23.

    Google Scholar 

  • Zhou, D. and Stenby, E.H.: 1993, ‘Interpretation of capillary pressure curves using invasion percolation theory’, Transport in Porous Media 11, 17-33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkowitz, B., Ewing, R.P. Percolation Theory and Network Modeling Applications in Soil Physics. Surveys in Geophysics 19, 23–72 (1998). https://doi.org/10.1023/A:1006590500229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006590500229

Navigation