Skip to main content
Log in

Integral Formulas for the r-Mean Curvature Linearized Operator of a Hypersurface

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

For a normal variation of a hypersurface Mn in a space form Q n+1 c by a normal vector field fN, R. Reilly proved:

$$\frac{d}{{dt}}S_{r + 1} (t)|_{t = 0} = L_r f + (S_1 S_{r + 1} - (r + 2)S_{r + 2} )f + c(n - r)S_r f,$$

where L r (0 < r < n − 1) is the linearized operator of the (r + 1)-mean curvature S r+1 of Mn given by L r = div(P r ∇); that is, L r = the divergence of the rth Newton transformation P r of the second fundamental form applied to the gradient ∇, and L0 = Δ the Laplacian of Mn.

From the Dirichlet integral formula for L r

$$\int {_{M^n } } (fL_r g + \left\langle {P_r \nabla f,\nabla g} \right\rangle ) = 0$$

new integral formulas are obtained by making different choices of f and g, generalizing known formulas for the Laplacian. The method gives a systematic process for proofs and a unified treatment for some Minkowski type formulas, via L r .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alencar, H., do Carmo, M. and Rosenberg, H.: On the first eigenvalue of the linearized operator of the r-th mean curvature of a hypersurface, Ann. Global Anal. Geom. 11 (1993), 387-391.

    Google Scholar 

  2. Alencar, H. and Frensel, K.: Hypersurfaces whose tangent geodesic omit a nonempty set, in Lawson, B. and Tenenblat, K. (eds), Differential Geometry, Pitman Monographs, Vol. 52, Longman, Essex, 1991, pp. 1-13.

    Google Scholar 

  3. Barbosa, L. and Colares, A. G.: Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom. 15 (1997), 277-297.

    Google Scholar 

  4. Barbosa, J. L. M., do Carmo, M. P. and Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197(1) (1988), 123-138.

    Google Scholar 

  5. Bivens, I.: Some integral formulas for hypersurfaces in a simply connected space form, Proc. Am. Math. Soc. 88(2) (1983), 113-118.

    Google Scholar 

  6. Chern, S. S.: Some formulas in theory of surfaces, Bol. Soc. Mat. Mexicana 10 (1953), 30-40.

    Google Scholar 

  7. Felipe, L. H. G.: On compact hypersurfaces immersed in a space form, Matemática Contemporânea 9 (1995), 75-90.

    Google Scholar 

  8. Fontenele, F.: On the Minkowski integrands, preprint, unpublished.

  9. Gardner, R.: The Dirichlet integral in differential geometry, in Chern, S. S. and Smale, S. (eds), Global Analysis, Proc. Symp. Pure Math., Vol. 15, AMS, Providence, RI, 1970, pp. 237-245.

    Google Scholar 

  10. Heintz, E.: Extrinsic upper bounds for λ1, Math. Ann. 280 (1988), 389-402.

    Google Scholar 

  11. Hsiung, C.-C.: Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954), 286-294.

    Google Scholar 

  12. Hsiung, C.-C.: Some integral formulas for closed hypersurfaces in Riemannian space, Pacific J. Math. 6 (1956), 291-299.

    Google Scholar 

  13. Katsurada, Y.: Generalized Minkowski formulas for closed hypersurfaces in Riemann space, Ann. Mat. Pura Appl. 57 (1962), 283-293.

    Google Scholar 

  14. Kohlman, P.: Minkowski integral formulas for compact convex bodies in standard space forms, Math. Nachr. 166 (1994), 217-228.

    Google Scholar 

  15. Korevaar, N.: Sphere theorem via Alexandrov for constant Weingarten curvature hypersurfaces. Appendix to a note of A. Ros, J. Differential Geom. 27 (1988), 221-223.

    Google Scholar 

  16. Montiel, S. and Ros, A.: Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, in Lawson, B. and Tenenblat, K. (eds), Differential Geometry, Pitman Monographs, Vol. 52, Longman, Essex, 1991, pp. 279-296.

    Google Scholar 

  17. Rosenberg, H.: Hypersurfaces of constant curvature in space forms, Bull. Sc. Math.2e série, 117 (1993), 211-239.

    Google Scholar 

  18. Rund, H.: Integral formulas on hypersurfaces in Riemannian manifolds, Ann. Mat. Pura Appl. 88 (1971), 99-122.

    Google Scholar 

  19. Reilly, R.: Extrinsic rigidity theorems for compact submanifolds of the sphere, J. Differential Geom. 4 (1970), 487-497.

    Google Scholar 

  20. Reilly, R.: Variational properties of functions of the mean curvature for hypersurfaces in space forms, J. Differential Geom. 8 (1973), 465-477.

    Google Scholar 

  21. Shahin, J. K.: Some integral formulas in Euclidean space, Proc. Am. Math. Soc. 19 (1968), 609-613.

    Google Scholar 

  22. Simon, U.: Minkowskische Integralformeln und ihre Anwendungen in der Differentialgeometrie im Großen, Math. Ann. 137 (1967), 307-321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alencar, H., Colares, A.G. Integral Formulas for the r-Mean Curvature Linearized Operator of a Hypersurface. Annals of Global Analysis and Geometry 16, 203–220 (1998). https://doi.org/10.1023/A:1006555603714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006555603714

Navigation