Skip to main content
Log in

RNA degradation and models for post-transcriptional gene silencing

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Post-transcriptional gene silencing (PTGS) is a form of stable but potentially reversible epigenetic modification, which frequently occurs in transgenic plants. The interaction in trans of genes with similar transcribed sequences results in sequence-specific degradation of RNAs derived from the genes involved. Highly expressed single-copy loci, transcribed inverted repeats, and poorly transcribed complex loci can act as sources of signals that trigger PTGS. In some cases, mobile, sequence-specific silencing signals can move from cell to cell or even over long distances in the plant. Several current models hold that silencing signals are `aberrant' RNAs (aRNA), which differ in some way from normal mRNAs. The most likely candidates are small antisense RNAs (asRNA) and double-stranded RNAs (dsRNA). Direct evidence that these or other aRNAs found in silent tissues can induce PTGS is still lacking. Most current models assume that silencing signals interact with target RNAs in a sequence-specific fashion. This results in degradation, usually in the cytoplasm, by exonucleolytic as well as endonucleolytic pathways, which are not necessarily PTGS-specific. Biochemical-switch models hold that the silent state is maintained by a positive auto-regulatory loop. One possibility is that concentrations of hypothetical silencing signals above a critical threshold trigger their own production by self-replication, by degradation of target RNAs, or by a combination of both mechanisms. These models can account for the stability, reversibility and multiplicity of silent states; the strong influence of transcription rate of target genes on the incidence and stability of silencing, and the amplification and systemic propagation of motile silencing signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abler, M.L. and Green, P.J. 1996. Control of mRNA stability in higher plants. Plant Mol. Biol. 32: 63–78.

    PubMed  Google Scholar 

  • Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R., Mallory, A.C., Smith, T.H. and Vance, V.B. 1998. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95: 13079–13084.

    PubMed  Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Colombo, L. and van Tunen, A.J. 1993. Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J. 4: 101–112.

    PubMed  Google Scholar 

  • Balandin, T. and Castresana, C. 1997. Silencing of a β-1,3–glucanase transgene is overcome during seed formation. Plant Mol. Biol. 34: 125–137.

    PubMed  Google Scholar 

  • Barry, C., Faugeron, G. and Rossignol, J.-L. 1993. Methylation induced premeiotically in Ascobolus: coextension with DNA repeat lengths and effect on transcript elongation. Proc. Natl. Acad. Sci. USA 90: 4557–4561.

    PubMed  Google Scholar 

  • Baulcombe, D.C. 1996. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8: 1833–1844.

    PubMed  Google Scholar 

  • Baulcombe, D.C. 1999. Gene silencing: RNA makes RNA makes no protein. Curr. Biol. 9: R599–R601.

    PubMed  Google Scholar 

  • Beclin, C., Berthome, R., Palauqui, J.C., Tepfer, M. and Vaucheret, H. 1998. Infection of tobacco or Arabidopsis plants by CMV counteracts systemic post-transcriptional silencing of non-viral (trans)genes. Virology 252: 313–317.

    PubMed  Google Scholar 

  • Boerjan, W., Bauw, G., Van Montagu, M. and Inzé, D. 1994. Distinct phenotypes generated by over-expression and suppression of S-adenosyl-L-methionine synthase reveals developmental patterns of gene silencing in tobacco. Plant Cell 6: 1401–1414.

    Article  PubMed  Google Scholar 

  • Bokar, J.A., Shambaugh, M.E., Polayes, D., Matra, A.G. and Rottman, F.M. 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6–adenosine)-methyltransferase. RNA 3: 1233–1247.

    PubMed  Google Scholar 

  • Bourque, J.E. 1995. Antisense strategies for genetic manipulation in plants. Plant Sci. 105: 125–149.

    Google Scholar 

  • Brandle, J.E., McHugh, S.G., James, L., Labbé, H. and Miki, B.L. 1995. Instability of transgene expression in field grown tobacco carrying the csr1–1 gene for sulfonylurea herbicide resistance. Bio/technology 13: 994–998.

    Google Scholar 

  • Brigneti, G., Voinnet, O., Li, W.-X., Ji, L.-H., Ding, S.-W. and Baulcombe, D.C. 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17: 6739–6746.

    PubMed  Google Scholar 

  • Bruening, G. 1998. Plant gene silencing regularized. Proc. Natl. Acad. Sci. USA 95: 13349–13351.

    PubMed  Google Scholar 

  • Chanfreau, G., Rotondo, G., Legrain, P. and Jacquier, A. 1998. Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J. 17: 3726–3737.

    PubMed  Google Scholar 

  • Cogoni, C. and Macino, G. 1999. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399: 166–169.

    PubMed  Google Scholar 

  • Cornelissen, M. 1989. Nuclear and cytoplasmic sites for antisense control. Nucl. Acids Res. 17: 7203–7209.

    PubMed  Google Scholar 

  • Cornelissen, M. and Vandewiele, M. 1989. Both RNA level and translation efficiency are reduced by anti-sense RNA in transgenic tobacco. Nucl. Acids Res. 17: 833–843.

    PubMed  Google Scholar 

  • Court, D. 1993. RNA processing and degradation by RNase III. In: G. Brawerman and J. Belasco (Eds.) Control of mRNA Stability, Academic Press, New York, pp. 70–116.

    Google Scholar 

  • Covey, S.N., Al-Kaff, N.S., Langara, A. and Turner, D.S. 1997. Plants combat infection by gene silencing. Nature 387: 781–782.

    Google Scholar 

  • Crété, P. and Leuenberger, S. 1994. Science, unpublished.

  • De Carvalho, F., Gheysen, G., Kushnir, S., Van Montagu, M., Inzé, D. and Castresana, C. 1992. Suppression of β-1,3–glucanase transgene expression in homozygous plants. EMBO J. 11: 2595–2602.

    PubMed  Google Scholar 

  • De Carvalho Niebel, F., Frendo, P., Van Montagu, M. and Cornelissen, M. 1995. Post-transcriptional cosuppression of β-1,3–glucanase genes does not affect accumulation of transgene nuclear mRNA. Plant Cell 7: 347–358.

    Article  PubMed  Google Scholar 

  • Dehio, C. and Schell, J. 1994. Identification of plant genetic loci involved in a post-transcriptional mechanism for meiotically reversible transgene silencing. Proc. Natl. Acad. Sci. USA 91: 5538–5582.

    PubMed  Google Scholar 

  • Depicker, A. and Van Montagu, M. 1997. Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9: 373–382.

    PubMed  Google Scholar 

  • Dorlhac de Borne, F., Vincentz, M., Chupeau, Y. and Vaucheret, H. 1994. Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants. Mol. Gen. Genet. 243: 613–621.

    PubMed  Google Scholar 

  • Dougherty, W.G., Lindbo, J.A., Smith, H.A., Parks, T.D., Swaney, S. and Proebsting, W.M. 1994. RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol. Plant-Microbe Interact. 7: 544–552.

    PubMed  Google Scholar 

  • Elmayan, T. and Vaucheret, H. 1996. Expression of single copies of a strongly expressed 35S transgene can be silenced posttranscriptionally. Plant J. 9: 787–798.

    Google Scholar 

  • Elmayan, T., Balzerque, S., Béon, F., Bourdon, V., Daubremet, J., Guénet, Y., Mourrain, P., Palauqui, J.-C., Vernhettes, S., Vialle, T., Wostrikoff, K. and Vaucheret, H. 1998. Arabidopsis mutants impaired in cosuppression. Plant Cell 10: 1747–1757.

    PubMed  Google Scholar 

  • English, J.J., Mueller, E. and Baulcombe, D.C. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8: 179–188.

    Article  PubMed  Google Scholar 

  • English, J.J., Davenport, G.F., Elmayan, T., Vaucheret, H. and Baulcombe, D.C. 1997. Requirement of sense transcription for homology-dependent virus resistance and trans-inactivation. Plant J. 12: 597–604.

    Google Scholar 

  • Fire, A. 1999. RNA-triggered gene silencing. Trends Genet. 15: 358–363.

    PubMed  Google Scholar 

  • Grant, S.R. 1999. Dissecting the mechanisms of posttranscriptional gene silencing: divide and conquer. Cell 96: 303–306.

    PubMed  Google Scholar 

  • Grierson, D., Fray, R.G., Hamilton, A.J., Smith, C.J.S. and Watson, C.F. 1991. Does co-suppression of sense genes in transgenic plants involve antisense RNA? Trends Biotechnol. 9: 122–123.

    Google Scholar 

  • Gutiérrez, R.A., MacIntosh, G.C. and Green, P.J. 1999. Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends Plant Sci. 4: 429–438.

    PubMed  Google Scholar 

  • Hamilton, A.J. and Baulcombe, D.C. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950–952.

    PubMed  Google Scholar 

  • Hamilton, A.J., Brown, S., Yuanhai, H., Ishizuka, M., Lowe, A., Solis, A.-G.A. and Grierson, D. 1998. A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J. 15: 737–746.

    Google Scholar 

  • Hart, C.M., Fischer, B., Neuhaus, J.-M. and Meins, F. Jr. 1992. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol. Gen. Genet. 235: 179–188.

    PubMed  Google Scholar 

  • Hein, P. 1966. Grooks. M.I.T. Press, Cambridge, UK (1966).

    Google Scholar 

  • Hentze, M.W. and Kulozik, A.E. 1999. A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96: 307–310.

    PubMed  Google Scholar 

  • Holtorf, H., Schöb, H., Kunz, C., Waldvogel, R. and Meins, F. Jr. 1999. Stochastic and nonstochastic post-transcriptional silencing of chitinase and β-1,3–glucanase genes involves increased RNA turnover. A possible role for ribosome independent RNA degradation. Plant Cell 11: 471–484.

    PubMed  Google Scholar 

  • Iino, Y., Sugimoto, A. and Yamamoto, M. 1991. S. pombe pac1C, whose overexpression inhibits sexual development, encodes a ribonuclease III-like RNase. EMBO J. 10: 221–226.

    PubMed  Google Scholar 

  • Ingelbrecht, I., Van Houdt, H., Van Montagu, M. and Depicker, A. 1994. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc. Natl. Acad. Sci. USA 91: 10502–10506.

    PubMed  Google Scholar 

  • Jacobs, J.J.M.R., Litière, K., van Dijk, V., van Eldik, G.J., VanMontagu, M. and Cornelissen, M. 1997. Post-transcriptional β-1,3–glucanase gene silencing involves increased transcript turnover that is translation-independent. Plant J. 12: 885–893.

    Google Scholar 

  • Jacobs, J.J.M.R., Sanders, M., Bots, M., Andriessen, M., van Eldik, G. J., Litière, K., Van Montagu, M. and Cornelissen, M. 1999. Sequences throughout the basic β-1,3–glucanase coding region are targets for homology dependent post-transcriptional gene silencing. Plant J. 20: 143–152.

    PubMed  Google Scholar 

  • Johnson, M.A., Baker, E.J., Colbert, J.T. and Green, P.J. 1998. Determinants of mRNA stability in plants. In: J. Bailey-Serres and D.R. Gallie DR (Eds.) A Look Beyond Transcription: Mechanisms Determining mRNA Stability and Translation in Plants, American Society of Plant Physiology, pp. 40–53.

  • Jones, A.L., Thomas, C.L. and Maule, A.J. 1998a. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J. 17: 6385–6393.

    PubMed  Google Scholar 

  • Jones, C.G., Scothern, G.P., Lycett, G.W. and Tucker, G.A. 1998b. The effect of chimeric transgene architecture on co-ordinated gene silencing. Planta 204: 499–505.

    Google Scholar 

  • Jorgensen, R. 1991. Beyond antisense: how do transgenes interact with homologous plant genes? Trends Biotechnol. 9: 266–267.

    Google Scholar 

  • Jorgensen, R. 1991. Silencing of plant genes by homologous transgenes. AgBiotechnol. News Info. 4: 265N–273N.

    Google Scholar 

  • Jorgensen, R.A. 1995. Cosuppression, flower color patterns, and metastable gene expression states. Science 268: 686–691.

    Google Scholar 

  • Kasschau, K.D. and Carrington, J.C. 1998. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95: 461–470.

    PubMed  Google Scholar 

  • Keller, W. 1999. Editing of mRNA precursors and if tRNAs by adenosine to inosine conversion. FEBS Lett. 452: 71–76.

    PubMed  Google Scholar 

  • Ketting, R.F., Haverkamp, T.H.A., van Luenen, H.G.A.M. and Plasterk, R.H.A. 1999. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99: 133–141.

    PubMed  Google Scholar 

  • Kooter, J.M., Matzke, M.A. and Meyer, P. 1999. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4: 340–347.

    PubMed  Google Scholar 

  • Krecic, A. and Swanson, M.S. 1999. HnRNP complexes: composition, structure, and function. Curr. Opin. Cell Biol. 11: 363–371.

    PubMed  Google Scholar 

  • Kufel, J., Dichtl, B. and Tollervey, D. 1999. Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 30 ETS but not the 50 ETS. RNA 5: 909–917.

    PubMed  Google Scholar 

  • Kumpatla, S.P., Chandrasekharan, M.B., Iyer, L.M., Li, G. and Hall, T.C. 1998. Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci. 3: 97–104.

    Google Scholar 

  • Kunz, C. 1997. Silencing of plant-defence related genes in Nicotiana sylvestris. Doctoral Dissertation, Basel.

  • Kunz, C., Schöb, H., Stam, M., Kooter, J.M. and Meins, F. Jr. 1996. Developmentally regulated silencing and reactivation of tobacco chitinase transgene expression. Plant J. 10: 437–450.

    Google Scholar 

  • Lang, A. 1965. Progressiveness and contagiousness in plant differentiation and development. Encycl. Plant Physiol. 15(1): 409–423.

    Google Scholar 

  • Lee, K.Y., Baden, C., Howie, W.J., Bedbrook, J. and Dunsmuir, P. 1997. Post-transcriptional gene silencing of ACC synthase in, tomato results from cytoplasmic RNA degradation. Plant J. 12: 1127–1137.

    Google Scholar 

  • Lindbo, J.A. and Dougherty, W.G. 1992. Untranslatable transcripts of the tobacco etch virus coat protein gene can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189: 725–733.

    Article  PubMed  Google Scholar 

  • Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M. and Dougherty, W.G. 1993. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5: 1749–1759.

    Article  PubMed  Google Scholar 

  • Litiere, K., van Eldik, G.J., Jacobs, J.J.M.R., Van Montagu, M. and Cornelissen, M. 1999. Posttranscriptional gene silencing of gn1 in tobacco triggers accumulation of truncated gn1–derived RNA species. RNA 5: 1364–1373.

    PubMed  Google Scholar 

  • Meins, F. Jr. 1996. Epigenetic modifications and gene silencing in plants. In: V.E.A. Russo, R.A. Martienssen and A.D. Riggs (Eds.) Epigenetic Mechanisms of Gene Regulation, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 415–442.

    Google Scholar 

  • Meins, F. Jr. and Kunz, C. 1995. Gene silencing in transgenic plants: A heuristic autoregulation model. Curr. Top. Microbiol. Immunol. 197: 105–120.

    PubMed  Google Scholar 

  • Mette, M.F., van der Winden, J., Matzke, M.A. and Matzke, A.J.M. 1999. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 18: 241–248.

    PubMed  Google Scholar 

  • Metzlaff, M. 1999. Post-transcriptional gene silencing in plants: pain or delight in transgene research? In: Proceedings of the Phytosphere Meeting, Elsevier, Amsterdam.

    Google Scholar 

  • Metzlaff, M., O'Dell, M., Cluster, P.D. and Flavell, R.B. 1997. RNA-mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88: 1–20.

    PubMed  Google Scholar 

  • Meyer, P. 1995. Understanding and controlling transgene expression. Trends Biotechnol. 13: 332–337.

    Google Scholar 

  • Meyer, P. and Saedler, H. 1996. Homology-dependent gene silencing in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 23–48 (1996).

    PubMed  Google Scholar 

  • Meyer, P., Linn, F., Heidmann, I., Meyer, A. H, Niedenhof, I. And Saedler, H. 1992. Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet. 231: 345–352.

    Google Scholar 

  • Mol, J., van Blokland, R. and Kooter, J. 1991. More about co-suppression. Trends Biotechnol. 9: 182–183.

    Google Scholar 

  • Moore, P.B. 1999. The RNA folding problem. In: R.F. Gesteland, T.R. Cech and J.F. Atkins (Eds.) The RNA World, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 381–401.

    Google Scholar 

  • Morino, K., Olsen, O.-A. and Shimamoto, K. 1999. Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. Plant J. 17: 275–285.

    PubMed  Google Scholar 

  • Mueller, E., Gilbert, J., Davenport, G., Brigneti, G. and Baulcombe, D.C. 1995. Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J. 7: 1001–1013.

    Google Scholar 

  • Mühlbach, H.P. and Sänger, H.L. 1979. Viroid replication is inhibited by alpha-amanitin. Nature 278: 185–188.

    PubMed  Google Scholar 

  • Napoli, C., Lemieux, C. and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289.

    Article  PubMed  Google Scholar 

  • Nichols, J.L. 1979. N6-Methyladenosine in maize poly(A)-containing RNA. Plant Sci. Lett. 15: 357–367.

    Google Scholar 

  • Palauqui, J.-C. and Vaucheret, H. 1995. Field trial analysis of nitrate reductase cosuppression: a comparative study of 38 combinations of transgene loci. Plant Mol. Biol. 29: 149–159.

    PubMed  Google Scholar 

  • Palauqui, J.-C. and Vaucheret, H. 1998. Transgenes are dispensible for the RNA degradation step of cosuppression. Proc. Natl. Acad. Sci. USA 95: 9675–9780.

    PubMed  Google Scholar 

  • Palauqui, J.-C., Elmayan, T., Dorlhac de Borne, F., Crété, P., Charles, C. and Vaucheret, H. 1996. Frequency, timing, and spatial patterns of co-suppression of nitrate reductase and nitrite reductase in transgenic tobacco. Plant Physiol. 112: 1447–1456.

    PubMed  Google Scholar 

  • Palauqui, J., Elmayan, T., Pollien, J. and Vaucheret, H. 1997. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16: 4738–4745.

    PubMed  Google Scholar 

  • Que, Q., Wang, H.-Y., English, J.J. and Jorgensen, R.A. 1997. The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9: 1357–1368.

    PubMed  Google Scholar 

  • Ratcliff, F., Harrison, B.D. and Baulcombe, D.C. 1997. A similarity between viral defense and gene silencing in plants. Science 276: 1558–1560.

    Google Scholar 

  • Ratcliff, F.G., MacFarlane, S.A. and Baulcombe, D.C. 1999. Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11: 1207–1216.

    PubMed  Google Scholar 

  • Riesner, D. and Gross, H.J. 1985. Viroids. Annu Rev. Biochem. 54: 531–564.

    Google Scholar 

  • Rosen, R. 1972. Mechanics of epigenetic control. In: R. Rosen (Ed.) Foundations of Mathematical Biology, 2nd ed., Academic Press, New York, pp. 79–140.

    Google Scholar 

  • Rotondo, G., Huang, J.Y. and Frendewey, D. 1997. Substrate structure requirements of the Pac1 ribonuclease from Schizosaccharomyces pombe. RNA 3: 1182–1193.

    PubMed  Google Scholar 

  • Ruiz, M.T., Voinnet, O. and Baulcombe, D.C. 1998. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937–946.

    PubMed  Google Scholar 

  • Sano, T., Nagayama, A., Ogawa, T., Ishida, I. and Okada, Y. 1997. Transgenic potato expressing a double-stranded RNA-specific ribonuclease is resistant to potato spindle tuber viroid. Nature Biotechnol. 15: 1290–1294.

    Google Scholar 

  • Schiebel, W., Pélissier, T., Riedel, L., Thalmeir, S., Schiebel, R., Kempe, D., Lottspeich, F., Sänger, H.L. and Wassenegger, M. 1998. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. Plant Cell 2087: 2101.

    Google Scholar 

  • Schmülling, T. and Röhrig, H. 1995. Gene silencing in transgenic tobacco hybrids: frequency of the event and visualization of somatic inactivation pattern. Mol. Gen. Genet. 249: 375–390.

    PubMed  Google Scholar 

  • Sharp, P.A. 1999. RNAi and double-strand RNA. Genes Dev. 13: 139–141.

    PubMed  Google Scholar 

  • Sijen, T., Wellink, J., Hiriart, J.-B. and van Kammen, A. 1996. RNA-mediated virus resistance: Role of repeated transgenes and delineation of targeted regions. Plant Cell 8: 2277–2294.

    PubMed  Google Scholar 

  • Smith, C.J.S., Watson, C.F., Bird, C.R., Ray, J., Schuch, W. and Grierson, D. 1990. Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol. Gen. Genet. 224: 477–481.

    PubMed  Google Scholar 

  • Smith, H.A., Swaney, S.L., Parks, T.D., Wernsman, E.A. and Dougherty, W.G. 1994. Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs. Plant Cell 6: 1441–1453.

    Article  PubMed  Google Scholar 

  • Stam, M., Mol, J.N.M. and Kooter, J.M. 1997. The silence of genes in transgenic plants. Ann. Bot. 79: 3–12.

    Google Scholar 

  • Stam, M., Viterbo, A., Mol, J. N. M. and Kooter, J. M. 1998. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol. Cell Biol. 18: 6165–6177.

    PubMed  Google Scholar 

  • Tanzer, M.M., Thompson, W.F., Law, M.D., Wernsman, E.A. and Uknes, S. 1997. Characterization of post-transcriptionally suppressed transgene expression that confers resistance to tobacco etch virus infection in tobacco. Plant Cell 9: 1411–1423.

    PubMed  Google Scholar 

  • Thompson, G.A. and Schultz, A. 1999. Macromolecular trafficking in the phloem. Trends Plant Sci. 4: 354–360.

    PubMed  Google Scholar 

  • Torrence, P.F., Maitra, R.K., Lesiak, K., Khamnei, S., Zhou, A. and Silverman, R. H. 1993. Targeting RNA for degradation with a (20–50) oligoadenylate antisense chimera. Proc. Natl. Acad. Sci. USA 90: 1300–1304.

    PubMed  Google Scholar 

  • van Blokland, R., van der Geest, N., Mol, J.N.M. and Kooter, J.M.1994. Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 6: 861–877.

    Article  Google Scholar 

  • van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A.R. 1990. Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a supression of gene expression. Plant Cell 2: 291–299.

    Article  PubMed  Google Scholar 

  • van Eldik, G.J., Litière, K., Jacobs, J.J.M.R., Van Montagu, M. and Cornelissen, M. 1998. Silencing of β-1,3–glucanase genes in tobacco correlates with an increased abundance of RNA degradation intermediates. Nucl. Acids Res. 26: 5176–5181.

    PubMed  Google Scholar 

  • van Hoof, A., Lennertz, P. and Parker, R. 2000. Yeast exosome mutants accumulate 30–extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell Biol. 20:441–452.

    PubMed  Google Scholar 

  • Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Mourrain, P., Palauqui, J.-C. and Vernhettes, S.1998. Transgene-induced gene silencing in plants. Plant J. 16:651–659.

    PubMed  Google Scholar 

  • Vaucheret, H., Nussaume, L., Palauqui, J.-C., Quilléré, I. and Elmayan, T. 1997. A transcriptionally active state is required for post-transcriptional silencing (cosuppression) of nitrate reductase host genes and transgenes. Plant Cell 9: 1495–1504.

    PubMed  Google Scholar 

  • Vaucheret, H., Palauqui, J.-C., Elmayan, T. and Moffatt, B.1995. Molecular and genetic analysis of nitrite reductase cosuppression in transgenic tobacco plants. Mol. Gen. Genet. 248:311–317.

    PubMed  Google Scholar 

  • Voinnet, O. and Baulcombe, D.C. 1997. Systemic signalling in gene silencing. Nature 389: 553–553.

    PubMed  Google Scholar 

  • Voinnet, O., Pinto, Y.M. and Baulcombe, D.C. 1999. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96: 14147–14152.

    PubMed  Google Scholar 

  • Voinnet, O., Vain, P., Angell, S. and Baulcombe, D.C. 1998. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 177: 187.

    Google Scholar 

  • Wagner, R.W., Smith, J.E., Cooperman, B.S. and Nishikura, K.1989. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc. Natl. Acad. Sci. USA 86: 2647–2651.

    PubMed  Google Scholar 

  • Wassenegger, M., Heimes, S., Riedel, L. and Sänger, H.L. 1994. RNA-directed de novo methylation of genomic sequences in plants. Cell 76: 567–576.

    PubMed  Google Scholar 

  • Wassenegger, M. and Pélissier, T. 1998. A model for RNA-mediated gene silencing in higher plants. Plant Mol. Biol. 37: 349–362.

    PubMed  Google Scholar 

  • Waterhouse, P.M., Graham, M.W. and Wang, M.-B. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95: 13959–13964.

    PubMed  Google Scholar 

  • Waterhouse, P.M., Smith, N.A. and Wang, M.-B. 1999. Virus resistance and gene silencing: killing the messenger. Trends Plant Sci. 4: 452–457.

    PubMed  Google Scholar 

  • Wei, C.M., Gershowitz, A. and Moss, B. 1976. 50–Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry 15: 397–401.

    PubMed  Google Scholar 

  • Xoconostle-Cázares, B., Xiang, Y., Ruiz-Medrano, R., Wang, H.-L., Monzer, J., Yoo, B.-C., McFarland, K.C., Franceschi, V.R. and Lucas, W.J. 1999. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meins, F. RNA degradation and models for post-transcriptional gene silencing. Plant Mol Biol 43, 261–273 (2000). https://doi.org/10.1023/A:1006443731515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006443731515

Navigation