Skip to main content
Log in

Regulation of histone gene expression during the cell cycle

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The steady-state level of histone mRNAs fluctuates coordinately with chromosomal DNA synthesis during the cell cycle. Such an S phase-specific expression pattern results from transcriptional activation of histone genes coupled with the onset of replication and from transcriptional repression of the genes as well as specific destabilization of histone mRNAs around the end of the S phase. Proliferation-coupled and S phase-specific expression of histone genes is primarily achieved by the activities of the proximal promoter regions, where several conserved cis-acting elements have been identified. Among them, three kinds of Oct-containing composite elements (OCEs) play a pivotal role in S phase-specific transcriptional activation. Other ones, such as Nona, solo-Oct, and CCGTC motifs, appear to modulate the functions of OCEs to enhance or repress the transcriptional level, possibly depending on the state of the cells. Here, we review the growing evidence concerning the regulatory mechanisms by which plant histone genes are expressed S phase-specifically in proliferating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ascenzi, R. and Gantt, J.S. 1997. A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol. Biol. 34: 629–641.

    PubMed  Google Scholar 

  • Atanassova, R., Chaubet, N. and Gigot, C. 1992. A 126 bp fragment of a plant histone gene promoter confers preferential expression in meristems of transgenic Arabidopsis. Plant J. 2: 291–300.

    PubMed  Google Scholar 

  • Atanassova, R., Flénet, M., Gigot, C. and Chaubet, N. 1998. Functional analysis of the promoter region of a maize (Zea mays L.) H3 histone gene in transgenic Arabidopsis thaliana. Plant Mol. Biol. 37: 275–285.

    PubMed  Google Scholar 

  • Brandstädter, J., Rossbach, C. and Theres, K. 1994. The pattern of histone H4 expression in the tomato shoot apex changes during development. Planta 192: 69–74.

    PubMed  Google Scholar 

  • Brignon, P. and Chaubet, N. 1993. Constitutive and cell-divisioninducible protein–DNA interactions in two maize histone gene promoters. Plant J. 4: 445–457.

    PubMed  Google Scholar 

  • Brignon, P., Lepetit, M., Gigot, C. and Chaubet, N. 1993. Nuclease sensitivity and functional analysis of a maize histone H3 gene promoter. Plant Mol. Biol. 22: 1007–1015.

    PubMed  Google Scholar 

  • Callard, D. and Mazzolini, L. 1997. Identification of proliferationinduced genes in Arabidopsis thaliana. Characterization of a new member of the highly evolutionarily conserved histone H2A.F/Z variant subfamily. Plant Physiol. 115: 1385–1395.

    PubMed  Google Scholar 

  • Chaboute, M.E., Chaubet, N., Clement, B., Gigot, C. and Philipps, G. 1988. Polyadenylation of histone H3 and H4 mRNAs in dicotyledonous plants. Gene 71: 217–223.

    PubMed  Google Scholar 

  • Chaubet, N. and Gigot, C. 1998. Histone gene expression. In: D. Francis, D. Dudits and D. Inzé (Eds.) Plant Cell Division, Portland Press, London, pp. 269–283.

    Google Scholar 

  • Chaubet, N., Philipps, G., Chaboute, M.E., Ehling, M. and Gigot, C. 1986. Nucleotide sequences of two corn histone H3 genes. Genomic organization of the corn histone H3 and H4 genes. Plant Mol. Biol. 6: 253–263.

    Google Scholar 

  • Chaubet, N., Chaboute, M.E., Clément, B., Ehling, M., Philipps, G. and Gigot, C. 1988. The histone H3 and H4 mRNAs are polyadenylated in maize. Nucl. Acids Res. 16: 1295–1304.

    PubMed  Google Scholar 

  • Chaubet, N., Clément, B., Philipps, G. and Gigot, C. 1991. Organ-specific expression of different histone H3 and H4 gene subfamilies in developing and adult maize. Plant Mol. Biol. 17: 935–940.

    PubMed  Google Scholar 

  • Chaubet, N., Clement, B. and Gigot, C. 1992. Genes encoding a histone H3.3-like variant in Arabidopsis contain intervening sequences. J. Mol. Biol. 225: 569–574.

    PubMed  Google Scholar 

  • Chaubet, N., Flénet, M., Clément, B., Brignon, P. and Gigot, C. 1996. Identification of cis-elements regulating the expression of an Arabidopsis histone H4 gene. Plant J. 10: 425–435.

    PubMed  Google Scholar 

  • Corlett, J.E., Wilkinson, S. and Thompson, A.J. 1998. Diurnal control of the drought-inducible putative histone H1 gene in tomato (Lycopersicon esculentum Mill. L.). J. Exp. Bot. 49: 945–952.

    Google Scholar 

  • Crane-Robinson, C. 1997. Where is the globular domain of linker histone located on the nucleosome? Trends Biochem. Sci. 22: 75–77.

    PubMed  Google Scholar 

  • Edwards, D., Murray, J.A.H. and Smith, A.G. 1998. Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol. 117: 1015–1022.

    PubMed  Google Scholar 

  • Fleming, A.J., Mandel, T., Roth, I. and Kuhlemeier, C. 1993. The patterns of gene expression in the tomato shoot apical meristem. Plant Cell 5: 297–309.

    PubMed  Google Scholar 

  • Fobert, P.R., Coen, E.S., Murphy, G.J.P and Doonan, J.H. 1994. Patterns of cell division revealed by transcriptional regulation of genes during the cell cycle in plants. EMBO J. 13: 616–624.

    PubMed  Google Scholar 

  • Foster, R., Izawa, T. and Chua, N.H. 1994. Plant bZIP proteins gather at ACGT elements. FASEB J. 8: 192–200.

    PubMed  Google Scholar 

  • Gantt, J.S. and Lenvik, T.R. 1991. Arabidopsis thaliana H1 histones. Analysis of two members of a small gene family. Eur. J. Biochem. 202: 1029–1039.

    PubMed  Google Scholar 

  • Heintz, N. 1991. The regulation of histone gene expression during the cell cycle. Biochim. Biophys. Acta 1088: 327–339.

    PubMed  Google Scholar 

  • Huh, G.H., Matsuura, Y., Meshi, T. and Iwabuchi, M. 1995. Differential expression of the two types of histone H2A genes in wheat. Biochim. Biophys. Acta. 1261: 155–160.

    PubMed  Google Scholar 

  • Huh, G.H., Nakayama, T., Meshi, T. and Iwabuchi, M. 1997. Structural characteristics of two wheat histone H2A genes encoding distinct types of variants and functional differences in their promoter activity. Plant Mol. Biol. 33: 791–802.

    PubMed  Google Scholar 

  • Ito, T., Fujimoto, Y., Nakayama, T. and Iwabuchi, M. 1995. A farupstream sequence of the wheat histone H3 promoter functions differently in rice and tobacco cultured cells. Plant Cell Physiol. 36: 1281–1289.

    PubMed  Google Scholar 

  • Ito, M., Iwase, M., Kodama, H., Lavisse, P., Komamine, A., Nishihama, R., Machida, Y. and Watanabe, A. 1998. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. Plant Cell 10: 331–341.

    PubMed  Google Scholar 

  • Iwabuchi, M., Nakayama, T. and Meshi, T. 1998. Transcriptional control of histone genes. In: D. Francis, D. Dudits and D. Inzé (Eds.) Plant Cell Division, Portland Press, London, pp. 285–300.

    Google Scholar 

  • Jayawardene, N. and Riggs, C.D. 1994. Molecular cloning, sequence analysis and differential expression of an introncontaining gene encoding tomato histone H1. Eur. J. Biochem. 223: 693–699.

    PubMed  Google Scholar 

  • Joanin, P., Gigot, C. and Philipps, G. 1992. Nucleotide sequence and expression of two cDNA coding for two histone H2B variants of maize. Plant Mol. Biol. 20: 581–588.

    PubMed  Google Scholar 

  • Joanin, P., Gigot, C. and Philipps, G. 1994. Molecular cloning and sequence analysis of two genes encoding two histone H2B variants of maize. Plant Physiol. Biochem. 32: 693–696.

    Google Scholar 

  • Kanazin, V., Blake, T. and Schoemaker, R.C. 1996. Organization of the histone H3 genes in soybean, barley and wheat. Mol. Gen. Genet. 250: 137–147.

    PubMed  Google Scholar 

  • Kapros, T., Bögre, L., Németh, K., Bakó, L., Györgyey, J., Wu, S.C. and Dudits, D. 1992. Differential expression of histone H3 gene variants during cell cycle and somatic embryogenesis in alfalfa. Plant Physiol. 98: 621–625.

    Google Scholar 

  • Kapros, T., Stefanov, I., Magyar, Z., Ocsovszky, I. and Dudits, D. 1993. A short histone H3 promoter from alfalfa specifies expression in S-phase cells and meristems. In Vitro Cell Dev. Biol. 29P: 27–32.

    Google Scholar 

  • Kapros, T., Robertson, A.J. and Waterborg, J.H. 1995. Histone H3 transcript stability in alfalfa. Plant Mol. Biol. 28: 901–914.

    PubMed  Google Scholar 

  • Kawata, T., Nakayama, T., Mikami, K., Tabata, T., Takase, H. and Iwabuchi, M. 1988. DNA-binding protein(s) interacts with a conserved nonameric sequence in the upstream regions of wheat histone genes. FEBS Lett. 239: 319–323.

    PubMed  Google Scholar 

  • Kim, S.A., Kwak, H.J., Park, M.C. and Kim, S.R. 1998. Induction of reproductive organ-preferential histone genes by wounding or methyl jasmonate. Mol. Cells 8: 669–677.

    PubMed  Google Scholar 

  • Köhler, S., Coraggio, I., Becker, D. and Salamini, F. 1992. Pattern of expression of meristem-specific cDNA clones of barley (Hordeum vulgare L.). Planta 186: 227–235.

    Google Scholar 

  • Koning, A.J., Tanimoto, E.Y., Kiehne, K., Rost, T. and Comai, L. 1991. Cell-specific expression of plant histone H2A genes. Plant Cell 3: 657–665.

    Article  PubMed  Google Scholar 

  • Kouchi, H., Sekine, M. and Hata, S. 1995. Distinct classes of mitotic cyclins are differentially expressed in the soybean shoot apex during the cell cycle. Plant Cell 7: 1143–1155.

    PubMed  Google Scholar 

  • Lepetit, M., Ehling, M., Chaubet, N. and Gigot, C. 1992. A plant histone gene promoter can direct both replication-dependent and-independent gene expression in transgenic plants. Mol. Gen. Genet. 231: 276–285.

    PubMed  Google Scholar 

  • Lepetit, M., Ehling, M., Atanassova, R., Chaubet, N. and Gigot, C. 1993. Replication-independent cis-acting element of a maize histone gene promoter. Plant Sci. 89: 177–184.

    Google Scholar 

  • Logemann, E., Wu, S.C., Schröder, J., Schmelzer, E., Somssich, I.E. and Hahlbrock, K. 1995. Gene activation by UV light, fungal elicitor or fungal infection in Petroselium crispum is correlated with repression of cell cycle-related genes. Plant J. 8: 865–876.

    PubMed  Google Scholar 

  • Maity, S.N. and de Crombrugghe, B. 1998. Role of the CCAATbinding protein CBF/NF-Y in transcription. Trends Biochem. Sci. 23: 174–178.

    PubMed  Google Scholar 

  • Mantovani, R. 1998. A survey of 178 NF-Y binding CCAAT boxes. Nucl. Acids Res. 6: 1135–1143.

    Article  Google Scholar 

  • Martínez-García, J.F., Moyano, E., Alcocer, M.J.C. and Martin, C. 1998. Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new subfamily of a bZIP transcription factors. Plant J. 13: 489–505.

    Article  PubMed  Google Scholar 

  • Marzluff, W.F. and Pandey, N.B. 1988. Multiple regulatory steps control histone mRNA concentrations. Trends Biochem. Sci. 13: 49–52.

    Article  PubMed  Google Scholar 

  • Medford, J.I., Elmer, J.S. and Klee, H.J. 1991. Molecular cloning and characterization of genes expressed in shoot apical meristems. Plant Cell 3: 359–370.

    PubMed  Google Scholar 

  • Menkens, A.E., Schindler, U. and Cashmore, A.R. 1995. The Gbox: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem. Sci. 20: 506–510.

    PubMed  Google Scholar 

  • Meshi, T. and Iwabuchi, M. 1995. Plant transcription factors. Plant Cell Physiol. 36: 1405–1420.

    PubMed  Google Scholar 

  • Meshi, T., Taoka, K. and Iwabuchi, M. 1998. S phase-specific expression of plant histone genes. J. Plant Res. 111: 247–251.

    Google Scholar 

  • Mikami, K. and Iwabuchi, M. 1993. Regulation of cell cycledependent gene expression. In: D.P.S. Verma (Ed.) Control of Plant Gene Expression, CRC Press, Boca Raton, FL, pp. 51–68.

    Google Scholar 

  • Mikami, K., Tabata, T., Kawata, T., Nakayama, T. and Iwabuchi, M. 1987. Nuclear protein(s) binding to the conserved DNA hexameric sequence postulated to regulate transcription of wheat histone genes. FEBS Lett. 223: 273–278.

    PubMed  Google Scholar 

  • Minami, M., Huh, G.H., Yang, P. and Iwabuchi, M. 1999. Coordinate gene expression of five subclass histones and the putative transcription factors, HBP-1a and HBP-1b, of histone genes in wheat. Plant Mol. Biol. 23: 429–434.

    Google Scholar 

  • Minami, M., Meshi, T. and Iwabuchi, M. 2000. S phase-specific DNA-binding proteins interacting with the Hex and Oct motifs in type I element of the wheat histone H3 promoter. Gene 241: 333–339.

    PubMed  Google Scholar 

  • Nagata, T., Nemoto, Y. and Hasegawa, S. 1992. Tobacco BY-2 cell line as the ‘HeLa’ cell in the cell biology of higher plants. Int. Rev. Cytol. 132: 1–30.

    Google Scholar 

  • Nakayama, T., Ohtsubo, N., Mikami, K., Kawata, T., Tabata, T., Kanazawa, H. and Iwabuchi, M. 1989. Cis-acting sequences that modulate transcription of wheat histone H3 gene and 3′ processing of H3 premature mRNA. Plant Cell Physiol. 30: 825–832.

    Google Scholar 

  • Nakayama, T., Sakamoto, A., Yang, P., Minami, M., Fujimoto, Y., Ito, T. and Iwabuchi, M. 1992. Highly conserved hexamer, octamer and nonamer motifs are positive cis-regulatory elements of the wheat histone H3 gene. FEBS Lett. 300: 167–170.

    PubMed  Google Scholar 

  • Nakayama, T., Ito, T. and Iwabuchi, M. 1995. Trans-activation of the wheat histone H3 promoter by Gal4 DNA-binding domain (1–94) in plant cells. Biochim. Biophys. Acta 1263: 281–284.

    PubMed  Google Scholar 

  • Ohtsubo, N. and Iwabuchi, M. 1994. The conserved 30-flanking sequence, AATGGAAATG, of the wheat histone H3 gene is necessary for the accurate 3′-end formation of mRNA. Nucl. Acids Res. 22: 1052–1058.

    PubMed  Google Scholar 

  • Ohtsubo, N., Nakayama, T., Terada, R., Shimamoto, K. and Iwabuchi, M. 1993. Proximal promoter region of the wheat histone H3 gene confers S phase-specific gene expression in transformed rice cells. Plant Mol. Biol. 23: 553–565.

    PubMed  Google Scholar 

  • Ohtsubo, N., Nakayama, T., Kaya, H., Terada, R., Shimamoto, K., Meshi, T. and Iwabuchi, M. 1997. Cooperation of two distinct cis-acting elements is necessary for the S phase-specific activation of the wheat histone H3 promoter. Plant J. 11: 1219–1225.

    Google Scholar 

  • Omirulleh, S., Ismagulova, A., Fehér, A., Bilgin, M., Mórocz, S. and Dudits, D. 1994. Differential activity of wheat histone H4 promoter in transgenic maize. NATO ASI Ser H81: 549–558.

    Google Scholar 

  • Osley, M.A. 1991. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60: 827–861.

    PubMed  Google Scholar 

  • Raghaven, V. 1989. mRNAs and a cloned histone gene are differentially expressed during anther and pollen development in rice (Oryza sativa L.). J. Cell Sci. 92:217–229.

    PubMed  Google Scholar 

  • Raghaven, V. and Olmedilla, A. 1989. Spatial patterns of histone mRNA expression during grain development and germination in rice. Cell Diff. Dev. 27: 183–196.

    Google Scholar 

  • Razafimahatratra, P., Chaubet, N., Philipps, G. and Gigot, C. 1991. Nucleotide sequence and expression of a maize H1 histone cDNA. Nucl. Acids Res. 19: 1491–1496.

    PubMed  Google Scholar 

  • Reichheld, J.P., Sonobe, S., Clément, B., Chaubet, N. and Gigot, C. 1995. Cell cycle-regulated histone gene expression in synchronized plant cells. Plant J. 7: 245–252.

    Article  Google Scholar 

  • Reichheld, J.P., Gigot, C. and Chaubet-Gigot, N. 1998. Multilevel regulation of histone gene expression during the cell cycle in tobacco cells. Nucl. Acids Res. 26: 3255–3262.

    Article  PubMed  Google Scholar 

  • Robertson, A.J., Kapros, T., Dudits, D. and Waterborg, J.H. 1996. Identification of three highly expressed replacement histone H3 genes of alfalfa. DNA Seq. 6: 137–146.

    PubMed  Google Scholar 

  • Robertson, A.J., Kapros, T. and Waterborg, J.H. 1997. A cell cycleregulated histone H3 gene of alfalfa with an atypical promoter structure. DNA Seq. 7: 209–216.

    PubMed  Google Scholar 

  • Sakamoto, A., Minami, M., Huh, G.H. and Iwabuchi, M. 1993. The putative zinc-finger protein WZF-1 interacts with a cis-acting element of histone genes. Eur. J. Biochem. 217: 1049–1056.

    PubMed  Google Scholar 

  • Sakamoto, A., Omirulleh, S., Nakayama, T. and Iwabuchi, M. 1996. A zinc-finger-type transcription factor WZF-1 that binds to a novel cis-acting element of histone gene promoters represses its own promoter. Plant Cell Physiol. 37:557–562.

    PubMed  Google Scholar 

  • Samuels, A.L., Meehl, J., Lipe, M. and Staehelin, L.A. 1998. Optimizing conditions for tobacco BY-2 cell cycle synchronization. Protoplasma 202: 232–236.

    Google Scholar 

  • Schümperli, D. 1988. Multilevel regulation of replication-dependent histone genes. Trends Genet. 4: 187–191.

    PubMed  Google Scholar 

  • Shen, W.H. and Gigot, C. 1997. Protein complexes binding to cis elements of the plant histone gene promoters: multiplicity, phosphorylation and cell cycle alteration. Plant Mol. Biol. 33: 367–379.

    PubMed  Google Scholar 

  • Stein, G.S., Stein, J.L., van Wijnen, A. J. and Lian J.B. 1994. Histone gene transcription: a model for responsiveness to an integrated series of regulatory signals mediating cell cycle control and proliferation/differentiation interrelationships. J. Cell. Biochem. 54: 393–404.

    PubMed  Google Scholar 

  • Stein, G.S., Stein, J.L., van Wijnen, A.J. and Lian, J.B. 1996. Transcriptional control of cell cycle progression: the histone gene is a paradigm for the G1/S phase and proliferation/differentiation transitions. Cell Biol. Int. 20: 41–49.

    PubMed  Google Scholar 

  • Sundås, A. and Engström, P. 1995. High level histone H2A gene expression during early stages of adventitious bud formation in Norway spruce (Picea abies). Physiol. Plant. 94: 197–204.

    Google Scholar 

  • Sundås, A., Tandre, K., Kvarnheden, A. and Engström, P. 1993. cDNA sequence and expression of an intron-containing histone H2A gene from Norway spruce, Picea abies. Plant Mol. Biol. 21: 595–605.

    PubMed  Google Scholar 

  • Szekeres, M., Haizel, T., Adam, E. and Nagy, F. 1995. Molecular characterization and expression of a tobacco histone H1 cDNA. Plant Mol. Biol. 27: 597–605.

    PubMed  Google Scholar 

  • Tabata, T., Takase, H., Takayama, S., Mikami, K., Nakatsuka, A., Kawata, T., Nakayama, T. and Iwabuchi M. 1989. A protein that binds to a cis-acting element of wheat histone genes has a leucine zipper motif. Science 245: 965–967.

    PubMed  Google Scholar 

  • Tabata, T., Nakayama, T., Mikami, K. and Iwabuchi, M. 1991. HBP-1a and HBP-1b: leucine zipper-type transcription factors of wheat. EMBO J. 10: 1459–1467.

    PubMed  Google Scholar 

  • Takase, H., Minami, M. and Iwabuchi, M. 1991a. Sequence-specific single-strand DNA-binding proteins that interact with the regulatory regions of wheat histone H3 and H4 genes. Biochem. Biophys. Res. Commun. 176: 1593–1600.

    PubMed  Google Scholar 

  • Takase, H., Tabata, T., Mikami, K. and Iwabuchi, M. 1991b. Partial purification and characterization of two transcription factors, HBP-1a and HBP-1b, specific for a cis-acting element, ACGTCA, of wheat histone genes. Plant Cell Physiol. 32: 1195–1203.

    Google Scholar 

  • Tanaka, I., Ono, K. and Fukuda, T. 1998. The developmental fate of angiosperm pollen is associated with a preferential decrease in the level of histone H1 in the vegetative nucleus. Planta 206: 561–569.

    Google Scholar 

  • Tanimoto, E.Y., Rost, T.L. and Comai, L. 1993. DNA replicationdependent histone H2A mRNA expression in pea root tips. Plant Physiol. 103: 1291–1297.

    PubMed  Google Scholar 

  • Taoka, K., Ohtsubo, N., Fujimoto, Y., Mikami, K., Meshi, T. and Iwabuchi, M. 1998. The modular structure and function of the wheat H1 promoter with S phase-specific activity. Plant Cell Physiol. 39: 294–306.

    PubMed  Google Scholar 

  • Taoka, K., Kaya, H., Nakayama, T., Araki, T., Meshi, T. and Iwabuchi, M. 1999. Identification of three kinds of mutually related composite elements conferring S phase-specific transcriptional activation. Plant J. 18: 611–623.

    PubMed  Google Scholar 

  • Terada, R., Nakayama, T., Iwabuchi, M. and Shimamoto, K. 1993. A wheat histone H3 promoter confers cell division-dependent and-independent expression of the gusA gene in transgenic rice plants. Plant J. 3: 241–252.

    PubMed  Google Scholar 

  • Terada, R., Nakayama, T., Iwabuchi, M. and Shimamoto, K. 1995. A type I element composed of the hexamer (ACGTCA) and octamer (CGCGGATC) motifs plays a role(s) in meristematicexpression of a wheat histone H3 gene in transgenic rice plants. Plant Mol. Biol. 27: 17–26.

    PubMed  Google Scholar 

  • Thompson, A.J. and Corlett, J.E. 1995. mRNA levels of four tomato (Lycopersicon esculentum Mill. L.) genes related to fluctuating plant and soil water status. Plant Cell Environ. 18: 773–780.

    Google Scholar 

  • Tréhin, C., Glab, N., Perennes, C., Planchais, S. and Bergounioux, C. 1999. M phase-specific activation of the Nicotiana sylvestris Cyclin B1 promoter involves multiple regulatory elements. Plant J. 17: 263–273.

    Google Scholar 

  • Ueda, K. and Tanaka, I. 1995. The appearance of male gametespecific histone gH2B and gH3 during pollen development in Lilium longiflorum. Dev. Biol. 169: 210–217.

    PubMed  Google Scholar 

  • van den Heuvel, K.J.P.T., van Esch, R.J., Barendse, G.W.M. and Wullems, G.J. 1999. Isolation and molecular characterization of gibberellin-regulated H1 and H2B histone cDNAs in the leaf of the gibberellin-deficient tomato. Plant Mol. Biol. 39: 883–890.

    PubMed  Google Scholar 

  • Waterborg, J.H. 1991. Multiplicity of histone H3 variants in wheat, barley, rice, and maize. Plant Physiol. 96: 453–458.

    Google Scholar 

  • Waterborg, J.H. 1992. Existence of two histone H3 variants in dicotyledonous plants and correlation between their acetylation and plant genome size. Plant Mol. Biol. 18: 181–187.

    PubMed  Google Scholar 

  • Wei, T. and O'Connell, M.A. 1996. Structure and characterization of a putative drought-inducible H1 histone gene. Plant Mol. Biol. 30: 255–268.

    PubMed  Google Scholar 

  • Wolffe, A. 1995. Chromatin. Structure and Function, 2nd ed., Academic Press, London.

    Google Scholar 

  • Woo, H.H, Brigham, L.A. and Hawes, M.C. 1995. Molecular cloning and expression of mRNAs encoding H1 histone and an H1 histone-like sequences in root tips of pea (Pisum sativum L.). Plant Mol. Biol. 28: 1143–1147.

    PubMed  Google Scholar 

  • Workman, J.L. and Kingston, R.E. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67: 545–579.

    PubMed  Google Scholar 

  • Wu, S.C., Bögre, L., Vincze, É., Kiss, G.B. and Dudits, D. 1988. Isolation of an alfalfa histone H3 gene: structure and expression. Plant Mol. Biol. 11: 641–649.

    Google Scholar 

  • Wu, S.C., Györgyey, J. and Dudits, D. 1989. Polyadenylated H3 histone transcripts and H3 histone variants in alfalfa. Nucl. Acids Res. 17: 3057–3063.

    PubMed  Google Scholar 

  • Xu, H., Swoboda, I., Bhalla, P.L. and Singh, M.B. 1999. Male gametic cell-specific expression of H2A and H3 histone genes. Plant Mol. Biol. 39: 607–614.

    PubMed  Google Scholar 

  • Yang, P., Taoka, K., Nakayama, T. and Iwabuchi, M. 1995. Structural and functional characterization of two wheat histone H2B promoters. Plant Mol. Biol. 28: 155–172.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshi, T., Taoka, Ki. & Iwabuchi, M. Regulation of histone gene expression during the cell cycle. Plant Mol Biol 43, 643–657 (2000). https://doi.org/10.1023/A:1006421821964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006421821964

Navigation