Skip to main content
Log in

Protein import into cyanelles and complex chloroplasts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Higher-plant, green and red algal chloroplasts are surrounded by a double membrane envelope. The glaucocystophyte plastid (cyanelle) has retained a prokaryotic cell wall between the two envelope membranes. The complex chloroplasts of Euglena and dinoflagellates are surrounded by three membranes while the complex chloroplasts of chlorarachniophytes, cryptomonads, brown algae, diatoms and other chromophytes, are surrounded by 4 membranes. The peptidoglycan layer of the cyanelle envelope and the additional membranes of complex chloroplasts provide barriers to chloroplast protein import not present in the simpler double membrane chloroplast envelope. Analysis of presequence structure and in vitro import experiments indicate that proteins are imported directly from the cytoplasm across the two envelope membranes and peptidoglycan layer into cyanelles. Protein import into complex chloroplasts is however fundamentally different. Analysis of presequence structure and in vitro import into microsomal membranes has shown that translocation into the ER is the first step for protein import into complex chloroplasts enclosed by three or four membranes. In vivo pulse chase experiments and immunoelectronmicroscopy have shown that in Euglena, proteins are transported from the ER to the Golgi apparatus prior to import across the three chloroplast membranes. Ultrastructural studies and the presence of ribosomes on the outermost of the four envelope membranes suggests protein import into 4 membrane-bounded complex chloroplasts is directly from the ER like outermost membrane into the chloroplast. The fundamental difference in import mechanisms, post-translational direct chloroplast import or co-translational translocation into the ER prior to chloroplast import, appears to reflect the evolutionary origin of the different chloroplast types. Chloroplasts with a two-membrane envelope are thought to have evolved through the primary endosymbiotic association between a eukaryotic host and a photosynthetic prokaryote while complex chloroplasts are believed to have evolved through a secondary endosymbiotic association between a heterotrophic or possibly phototrophic eukaryotic host and a photosynthetic eukaryote.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apt KE, Clennenden SK, Powers DA, Grossman AR: The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol Gen Genet 246: 455–464 (1995).

    Google Scholar 

  2. Apt KE, Hoffmann NE, Grossman AR: The γ-subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. J Biol Chem 268: 16208–16215 (1993).

    Google Scholar 

  3. Apt KE, Sukenik A, Grossman AK: The ER chaperone BiP from the diatom Phaeodactylum. Plant Physiol 109: 339 (1995).

    Google Scholar 

  4. Baron C, Llosa M, Zhou S, Zambryski PC: Vir B1, a component of the T complex transfer machinery of Agrobacterium tumefaciens, is processed to a C terminal secreted product, VirB1*. J Bact 179: 1203–1210 (1997).

    Google Scholar 

  5. Bar-Peled M, Bassham DC, Raikhel NV: Transport of proteins in eukaryotic cells: more questions ahead. Plant Mol Biol 32: 223–249 (1996).

    Google Scholar 

  6. Bhaya D, Grossman AR: Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229: 400–404 (1991)

    Google Scholar 

  7. Bhaya D, Grossman AR: Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaedactylum tricornutum. Nucl Acids Res 21: 4458–4466 (1993).

    Google Scholar 

  8. Bodyl A: Mechanism of protein targeting to the chlorarachniophyte plastids and the evolution of complex plastids with four membranes: a hypothesis. Bot Acta 110: 395–400 (1997).

    Google Scholar 

  9. Caron L, Douady D, Quinet-Szely M, deGoer S, Berkaloff C: Gene structure of a chlorophyll a/c binding protein from a brown algae: presence of an intron and phylogenetic implications. J Mol Evol 43: 270–280 (1996).

    Google Scholar 

  10. Chan R L, Keller M, Canaday, J, Weil J H, Imbault P: Eight small subunits of Euglena ribulose 1,5–bisphosphate carboxylase/ oxygenase are translated from a large mRNA as a polyprotein. EMBO J 9: 333–338 (1990).

    Google Scholar 

  11. Cline K, Henry H: Import and routing of nucleus-encoded chloroplast proteins. Annu Rev Cell Devel Biol 12: 1–26 (1996)

    Google Scholar 

  12. Demchick P, Koch AL: The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bact 178: 768–773 (1996).

    Google Scholar 

  13. Dodge JD: A survey of chloroplast ultrastructure in the Dinophyceae. Phycologia 14: 253–263 (1975).

    Google Scholar 

  14. Douglas S: Chloroplast origins and evolution. In: Bryant DA (ed) TheMolecular Biology of the Cyanobacteria, pp. 91–118. Kluwer Academic Publishers, Dordrecht, Netherlands (1994).

    Google Scholar 

  15. Durnford DG, Aebersold R, Green BR: The fucoxanthinchlorophyll proteins from a chromophyte alga are part of a large multigene family: structural and evolutionary relationships to other light harvesting antennae. Mol Gen Genet 253: 377–386 (1996).

    Google Scholar 

  16. Enomoto T, Sulli C, Schwartzbach SD: A soluble chloroplast protease processes the Euglena polyprotein precursor of photosystem II. Plant Cell Physiol 38: 743–746 (1997).

    Google Scholar 

  17. Gafvelin G, Sakaguchi M, Andersson H, von Heijne G: Topological rules for membrane protein assembly in eukaryotic cells. J Biol Chem 272: 6119–6127 (1997).

    Google Scholar 

  18. Gibbs SP: The chloroplast endoplasmic reticulum: structure, function and evolutionary significance. Int Rev Cytol 72: 49–99 (1981).

    Google Scholar 

  19. Gibbs SP: The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56: 2883–2889 (1978).

    Google Scholar 

  20. Gibbs SP: The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Annu NY Acad Sci 361: 193–207 (1981).

    Google Scholar 

  21. Gibbs SP: The route of entry of cytoplasmically synthesized proteins into chloroplast of algae possessing chloroplast ER. J Cell Sci 35: 253–266 (1979).

    Google Scholar 

  22. Giddings THjr, Wasmann C, Staehelin, LA: Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxa. Plant Physiol 71: 409–419 (1983).

    Google Scholar 

  23. Gilson PR, Mc Fadden GI: The miniaturized genome of a eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. Proc Natl Acad Sci USA 93: 7737–7742 (1996).

    Google Scholar 

  24. Grossman A, Manodori A, Snyder D: Light-harvesting proteins of diatoms: Their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into plastids. Mol Gen Genet 224: 91–100 (1990).

    Google Scholar 

  25. Hallick RB, Hong L, Drager RG, Favreau MR, Montfort A, Orsat B, Spielmann A, Stutz E: Complete sequence of Euglena gracilis chloroplast DNA. Nucl Acids Res 21: 3537–3544 (1993).

    Google Scholar 

  26. Häuber MM, Müller SB, Speth V, Maier U-G: How to evolve a complex plastid? A hypothesis. Bot Acta 107: 383–386 (1994).

    Google Scholar 

  27. Henze K, Badr A, Wettern M, Cerff R, Martin W: A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. Proc Nat Acad Sci USA 92: 9122–9126 (1995).

    Google Scholar 

  28. Hiller RG, Wrench PM, Sharples FP: The light harvesting chlorophyll a-c binding protein of dinoflagellates: a putative polyprotein. FEBS Lett 363: 175–178 (1995).

    Google Scholar 

  29. Jakowitsch J, Bayer MG, Maier TL, Lüttke A, Gebhart UB, Brandtner M, Hamilton B, Neumann-Spallart C, Michalowski CB, Bohnert HJ, Schenk HEA, Löffelhardt W: Sequence analysis of pre-ferredoxin-NADPC-reductase cDNA from Cyanophora paradoxa specifying a precursor for a nucleusencoded cyanelle polypeptide. Plant Mol Biol 21: 1023–1033 (1993).

    Google Scholar 

  30. Jakowitsch J, Neumann-Spallart C, Ma Y, Steiner JM, Schenk HEA, Bohnert HJ, Löffelhardt W: In vitro import of preferredoxin-NADPC-oxidoreductase from Cyanophora paradoxa into cyanelles and into pea chloroplasts. FEBS Lett 381: 153–155 (1996).

    Google Scholar 

  31. Jenkins J, Hiller RG, Speirs J, Godovac-Zimmermann J: A genomic clone encoding a cryptophyte phycoerythrin α-subunit. Evidence for three α-subunits and an N-terminal membrane transit sequence. FEBS Lett 273: 191–194 (1990).

    Google Scholar 

  32. Keller M, Chan RL, Tessier LH, Weil JH, Imbault P: Posttranscriptional regulation by light of the biosynthesis of Euglena ribulose-1, 5–bisphosphate carboxylase/oxygenase small subunit. Plant Mol Biol 17: 73–82 (1991).

    Google Scholar 

  33. Kishore R, Muchhal MS, Schwartzbach SD: The presequence of Euglena LHCP II, a cytoplasmically synthesized chloroplast protein, contains a functional endoplasmic reticulum targeting domain. Proc Natl Acad Sci USA 90: 11845–11849 (1993).

    Google Scholar 

  34. Kowallik K, Stoebe B, Schaffran I, Freier U: The chloroplast genome of a chlorophyll a+c containing alga, Odontella sinensis. Plant Mol Biol Rep 13: 336–342 (1995).

    Google Scholar 

  35. Kroth-Pancic PG: Nucleotide sequence of two cDNAs encoding fucoxanthin chlorophyll a/c proteins in the diatom Odontella sinensis. Plant Mol Biol 27: 825–828 (1995).

    Google Scholar 

  36. LaRoche J, Henry D, Wyman K, Sukenik A, Falkowski P: Cloning and nucleotide sequence of a cDNA encoding a major fucoxanthin-chlorophyll a/c-containing protein from the chrysophyte Isochrysis galbana: implications for evolution of the cab gene family. Plant Mol Biol 25: 355–368 (1994).

    Google Scholar 

  37. Le QH, Markovic P, Hastings JW, Jovine RVM, Morse D: Structure and organization of the peridinin-chlorophyll abinding protein gene in Gonyaulax polyedra. Mol Gen Genet 255: 595–604 (1997).

    Google Scholar 

  38. Lefort-Tran M, Pouphile M, Freyssinet G, Pineau B: Signification structurale et fonctionnelle des enveloppes chloroplastiques d'Euglena: étude immunocytologique et en cryofracture. J Ultrastruct Res 73: 44–63 (1980).

    Google Scholar 

  39. Liaud MF, Valentin C, Brandt U, Bouget F-Y, Kloareg B, Cerff R: The GAPDH system of the red alga Chondrus crispus: promoter structures, intron/exon organization, genomic complexity and differential expression of genes. Plant Mol Biol 23: 981–994 (1993).

    Google Scholar 

  40. Lin Q, Ma L, Burkhart W, Spremulli LL: Isolation and characterization of cDNA clones for chloroplast translational initiation factor-3 from Euglena gracilis. J Biol Chem 269: 9436–9444 (1994).

    Google Scholar 

  41. Löffelhardt W, Bohnert HJ, Bryant DA: The cyanelles of Cyanophora paradoxa. Crit Rev Plant Sci 16: 393–413 (1997).

    Google Scholar 

  42. McFadden GE, Gilson PR, Douglas SE, Cavalier-Smith T, Hofmann CJ, Maier UG: Bonsai genomics: sequencing the smallest eukaryotic genomes. Trends Genet 13: 46–49 (1997).

    Google Scholar 

  43. McFadden GI, Gilson PR: Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis. Trends Ecol Evol 10: 12–17 (1995).

    Google Scholar 

  44. Muchhal U, Schwartzbach SD: Characterization of a Euglena gene encoding a polyprotein precursor to the light harvesting chlorophyll a/b binding protein of photosystem II. Plant Mol Biol 18: 287–299 (1992).

    Google Scholar 

  45. Nielsen H, Engelbrecht J, Brunak S, Von Heijne G: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10: 1–6 (1997).

    Google Scholar 

  46. Norris BJ, Miller DJ: Nucleotide sequence of a cDNA clone encoding the precursor of the peridinin chlorophyll a-binding protein from dinoflagellate Symbiodinium sp. Plant Mol Biol 24: 673–677 (1994).

    Google Scholar 

  47. Osafune T, Ehara T, Ito A, Hase E: Incorporation of cytoplasmic structures by developing proplastids in dark-grown Euglena gracilis cells transferred to an inorganic medium in darkness. J Electron Microsc 39: 168–171 (1990).

    Google Scholar 

  48. Osafune T, Ehara T, Yokota A, Hase E: Immunogold localization of ribulose-1,5–bisphosphate carboxylase/oxysenase in developing proplastids of dark-green wax rich cells of Euglena gracilis. J Electron Microsc 41: 469–474 (1992).

    Google Scholar 

  49. Osafune T, Klein S, Schiff JA: Events surrounding the early development of Euglena chloroplasts. 18. Structure of the developing proplastid in the first hours of illumination from serial sections of wild-type cells. J Ultrastruct Res 73: 77–90 (1980).

    Google Scholar 

  50. Osafune T, Schiff JA: W10BSmL, amutant of Euglena gracilis var. bacillaris lacking plastids. Exp Cell Res 148: 530–535 (1983).

    Google Scholar 

  51. Osafune T, Schiff JA, Hase E: Accumulation of LHCP II apoprotein in wax-rich cells of Euglena in low light or in the presence of streptomycin. J Structural Biol 109: 97–108 (1992).

    Google Scholar 

  52. Osafune T, Schiff JA, Hase E: Immunogold localization of LHCP II apoprotein in the Golgi of Euglena. Cell Struct Function 15: 99–105 (1990).

    Google Scholar 

  53. Osafune T, Schwartzbach SD, Yamato M: Immunocytochemical localization of RuBisCo in the compartmentalized osmiophilic body in dark-grown cells of Euglena gracilis Z. J Electron Microsc 45: 239–241 (1996).

    Google Scholar 

  54. Osafune T, Sumida S, Schiff JA, Hase E: Immunolocalization of LHCP II apoprotein in the Golgi during light-induced chloroplast development in non-dividing Euglena cells. J Electron Microsc 40: 41–47 (1991).

    Google Scholar 

  55. Osafune T, Sumida S, Schiff JA, Hase E: Stage-dependent localization of LHCP II apoprotein in the Golgi of sychronized cells of Euglena gracilis by immunogold electron microscopy. Exp Cell Res 193: 320–330 (1991).

    Google Scholar 

  56. Palmer JD, Delwiche CF: Second-hand chloroplasts and the case of the disappearing nucleus. Proc Natl Acad Sci USA 93: 7432–7435 (1996).

    Google Scholar 

  57. Pancic PG, Strotmann H: Structure of the nuclear-encoded-subunit of CF0CF1 of the diatom Odontella sinensis including its presequence. FEBS Lett 320: 61–66 (1993).

    Google Scholar 

  58. Passaquet C, Lichtlé C: Molecular Study of a light-harvesting apoprotein of Giraudyopsis stellifer (Chrysophyceae). Plant Mol Biol 29: 135–148 (1995).

    Google Scholar 

  59. Plaumann M, Pelzer-Reith B, Martin WF, Schnarrenberger C: Mutiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eukaryotic class-II aldolases revealed by cDNAs from Euglena gracilis. Curr Genet 31: 430–438 (1997).

    Google Scholar 

  60. Pryer NK, Wuestehube LJ, Schekman R: Vesicle-mediated protein sorting. Annu Rev Biochem 61: 471–516 (1992).

    Google Scholar 

  61. Reinbothe S, Krauspe R, Parthier B: In-vitro transport of chloroplast proteins in a homologous Euglena system with particular reference to plastid leucyl-tRNA synthetase. Planta 181: 176–183 (1990).

    Google Scholar 

  62. Reith M: Molecular biology of rhodophyte and chromophyte plastids. Annu Rev Plant Physiol Plant Mol Biol 46: 549–575 (1995).

    Google Scholar 

  63. Reith M, Munholland J: Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 332–335 (1995).

    Google Scholar 

  64. Rikin A, Schwartzbach SD: Extremely large and slowly processed precursors to the Euglena light harvesting chlorophyll a/b binding proteins of photosystem II. Proc Natl Acad Sci USA 85: 5117–5121 (1988).

    Google Scholar 

  65. Rikin A, Schwatzbach SD: Regulation by light and ethanol of the synthesis of the light harvesting chlorophyll a/b binding protein of photosystem II in Euglena. Planta 178: 76–83 (1989).

    Google Scholar 

  66. Robinson C, Hynds PJ, Robinson D, Mant A: Multiple pathways for the targeting of thylakoid proteins in chloroplasts. Plant Mol Biol (this issue).

  67. Rowan R, Whitney SM, Fowler A, Yellowlees D: Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. Plant Cell 8: 539–553 (1996).

    Google Scholar 

  68. Schiff JA, Schwartzbach SD, Osafune T, Hase E: Photocontrol and processing of LHCP II apoprotein in Euglena: possible role of Golgi and other cytoplasmic sites. J Photochem Photobiol B Biol 11: 219–236 (1991).

    Google Scholar 

  69. Schlichting R, Zimmer W, Bothe H: Exchange of metabolites in Cyanophora paradoxa and its cyanelles. Bot Acta 103: 392–398 (1990).

    Google Scholar 

  70. Schlichting R, Bothe H: The cyanelles (organelles of a low evolutionary scale) possess a phosphate translocator and a glucose carrier in Cyanophora paradoxa. Bot Acta 106: 428–434 (1993).

    Google Scholar 

  71. Sharif AL, Smith AG, Abell C: Isolation and characterization of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesized with a very long transit peptide in Euglena. Eur J Biochem 184: 353–359 (1989).

    Google Scholar 

  72. Sharples FP, Wrench PM, Ou K, Hiller RG: Two distinct forms of the peridinin-chlorophyll a-protein from Amphidinium carterae. Biochim Biophys Acta 1276: 117–123 (1996).

    Google Scholar 

  73. Shashidhara LS, Lim SH, Schackleton JB, Robinson C, Smith AG: Protein targeting across the three membranes of the Euglena chloroplast envelope. J Biol Chem 267: 12885–12891 (1992).

    Google Scholar 

  74. Shashidhara LS, Smith AG: Expression and subcellular location of the tetrapyrrole synthesis enzyme porphobilinogen deaminase in light grown Euglena gracilis and three nonchlorophyllous cell lines. Proc Nat Acad Sci USA 88: 63–67 (1991).

    Google Scholar 

  75. Shigemori Y, Inagaki J, Mori H, Nishimura M, Takahashi S, Yamamoto Y: The presequence of the precursor to the nucleus encoded 30 kDa protein of photosystem II in Euglena gracilis Z includes two hydrophobic domains. Plant Mol Biol 24: 209–215 (1994).

    Google Scholar 

  76. Smith GJ, Gao Y, Alberte RS: The fucoxanthin-chlorophyll a/c proteins comprise a large family of co-expressed genes in the marine diatom Skeletonema costatum (Greve): charactrization of 8 unique cDNAs. Plant Physiol 114: 1136 (1997).

    Google Scholar 

  77. Soll J, Tien, R: Translocation into and across the chloroplast envelope. Plant Mol Biol (this issue).

  78. Stirevalt VL, Michalowski CB, Löffelhardt W, Bohnert HJ, Bryant, DA: Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Rep 13: 327–332 (1995).

    Google Scholar 

  79. Sugiura M: The chloroplast genome. Plant Mol Biol 19: 149–169 (1992).

    Google Scholar 

  80. Sulli C, Schwartzbach SD: A soluble protein is imported into Euglena chloroplasts as a membrane-bound precursor. Plant Cell 8: 43–53 (1996).

    Google Scholar 

  81. Sulli C, Schwartzbach SD: Precursor protein topology in Golgi vesicles during transport to Euglena chloroplasts. Mol Biol Cell 7: 498a (1996).

    Google Scholar 

  82. Sulli C, Schwartzbach SD: The polyprotein precursor to the Euglena light harvesting chlorophyll a/b-binding protein is transported to the Golgi apparatus prior to chloroplast import and polyprotein processing. J Biol Chem 270: 13084–13090 (1995).

    Google Scholar 

  83. Sweeney BM: Freeze-fractured chloroplast membranes of Gonyaulax polyedra (Pyrrophyta). J Phycol 17: 95–101 (1981).

    Google Scholar 

  84. Tan S, Cuningham FXjr, Gantt E: LhcaR1 of the red alga Porphyridium cruentum encodes a polypeptide of the LHCI complex with seven potential chlorophyll a-binding residues that are conserved in most LHCs. Plant Mol Biol 33: 157–167 (1997).

    Google Scholar 

  85. Tessier LH, Keller M, Chan RL, Fournier R, Weil JH, Imbault P: Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO J 10: 2621–2625 (1991).

    Google Scholar 

  86. Van de Peer Y, Rensing SA, Maier UG, De Wachter R: Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Natl Acad Sci USA 93: 7732–7736 (1996).

    Google Scholar 

  87. Von Heijne G: Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta 947: 307–333 (1988).

    Google Scholar 

  88. Wakasugi R, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K, Sugiura M: Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division Proc Natl Acad Sci USA 94: 5967–5972 (1997).

    Google Scholar 

  89. Walter P, Johnson AE: Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10: 87–119 (1994).

    Google Scholar 

  90. Whatley J: The endosymbiotic origin of chloroplasts. Int Rev Cytol 144: 259–299 (1993).

    Google Scholar 

  91. Zhou YH, Ragan MA: cDNA cloning and characterization of the nuclear gene encoding chloroplast glyceraldehyde-3–phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. Curr Genet 23: 483–489 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Schwartzbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartzbach, S.D., Osafune, T. & Löffelhardt, W. Protein import into cyanelles and complex chloroplasts. Plant Mol Biol 38, 247–263 (1998). https://doi.org/10.1023/A:1006029919283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006029919283

Navigation