Skip to main content
Log in

Amino-terminal and hydrophobic regions of the Chlamydomonas reinhardtii plastocyanin transit peptide are required for efficient protein accumulation in vivo

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Nucleus-encoded chloroplast proteins of vascular plants are synthesized as precursors and targeted to the chloroplast by stroma-targeting domains in N-terminal transit peptides. Transit peptides in Chlamydomonas reinhardtii are considerably shorter than those in vascular plants, and their stroma-targeting domains have similarities to both mitochondrial and chloroplast targeting sequences. To examine Chlamydomonas transit peptide function in vivo, deletions were introduced into the transit peptide coding region of the petE gene, which encodes the thylakoid lumen protein plastocyanin (PC). The mutant petE genes were introduced into a plastocyanin-deficient Chlamydomonas strain, and transformants that accumulated petE mRNA were analyzed for PC accumulation. The most profound defects were observed with deletions at the N-terminus and those that extended into the hydrophobic region in the C-terminal half of the transit peptide. PC precursors were detected among pulse-labeled proteins in transformants with N-terminal deletions, suggesting that these precursors cannot be imported and are degraded in the cytosol. Intermediate PC species were observed in a transformant deleted for part of the hydrophobic region, suggesting that this protein is defective in lumen translocation and/or processing. Thus, despite its shorter length, the bipartite nature of the Chlamydomonas PC transit peptide appears similar to that of lumen-targeted proteins in vascular plants. Analysis of the synthesis, stability, and accumulation of PC species in transformants bearing deletions in the stroma-targeting domain suggests that specific regions probably have distinct roles in vivo. Abbreviations: cyt, cytochrome; ECL, enhanced chemiluminescence; LSU, large subunit; PC, plastocyanin; TP, transit peptide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Archer EK, Keegstra K: Analysis of chloroplast transit peptide function using mutations in the carboxyl-terminal region. Plant Mol Biol 23: 1105–1115 (1993).

    PubMed  Google Scholar 

  2. Bassham DC, Creighton AM, Karnauchov I, Herrmann RG, Klösgen RB, Robinson C: Mutations at the stromal processing peptidase cleavage site of a thylakoid lumen protein precursor affect the rate of processing, but not the fidelity. J Biol Chem 269: 16062–16066 (1994).

    PubMed  Google Scholar 

  3. Belknap WR: Partial purification of intact chloroplasts from Chlamydomonas reinhardtii. Plant Physiol 72: 1130–1132 (1983).

    Google Scholar 

  4. Blankenship JE, Kindle KL: Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii. A cabII-1/nit1 gene functions as a dominant selectable marker in nit1nit2– strain. Mol Cell Biol 12: 5268–5279 (1992).

    Google Scholar 

  5. Boutry M, Nagy F, Poulsen C, Aoyagi K, Chua N-H: Targeting of bacterial chloramphenicol acetyl transferase to mitochondria in transgenic plants. Nature 328: 340–342 (1987).

    Article  PubMed  Google Scholar 

  6. Cerutti H, Johnson AM, Gillham NW, Boynton JE: Nuclear integration and expression of a eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii. Genetics 145: 97–110 (1997).

    PubMed  Google Scholar 

  7. Church G, Gilbert W: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995 (1984).

    PubMed  Google Scholar 

  8. Cline K, Henry R: Import and routing of nucleus-encoded proteins. Annu Rev Cell Devel Biol 12: 1–26 (1996).

    Google Scholar 

  9. Debuchy R, Purton S, Rochaix J-D: The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8: 2803–2809 (1989).

    PubMed  Google Scholar 

  10. Durrant I: Light-based detection of biomolecules. Nature 346: 297–298 (1990).

    PubMed  Google Scholar 

  11. Endo T, Kawamura K, Naka M: The chloroplast-targeting domain of plastocyanin transit peptide can form a helical structure but does not have a high affinity for lipid bilayers. Eur J Biochem 207: 671–675 (1992).

    PubMed  Google Scholar 

  12. Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  13. Franzén L-G, Rochaix J-D, von Heijne G: Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii share features with both mitochondrial and higher plant chloroplast presequences. FEBS Lett 260: 165–168 (1990).

    PubMed  Google Scholar 

  14. Gray JC, Row PE: Protein translocation across chloroplast envelope membranes. Trends Cell Biol 5: 243–247 (1995).

    PubMed  Google Scholar 

  15. Harris EH: The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego, CA (1989).

    Google Scholar 

  16. Howe G, Merchant S: Maturation of thylakoid lumen proteins proceeds post-translationally through an intermediate in vivo. Proc Natl Acad Sci USA 90: 1862–1866 (1993).

    PubMed  Google Scholar 

  17. Hurt EC, Soltanifar N, Goldschmidt-Clermont M, Rochaix J-D: The cleaveable presequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria. EMBO J 5: 1343–1350 (1986).

    Google Scholar 

  18. Kindle KL: High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 1228–1232 (1990).

    PubMed  Google Scholar 

  19. Kindle KL: Nuclear transformation: technology and applications. In: Rochaix J-D, Goldschmidt-Clermont M, Merchant S (eds) Molecular Biology of Chlamydomonas: Chloroplasts and Mitochondria. Kluwer Academic Publishers, Dordrecht, Netherlands (in press).

  20. Kindle KL, Lawrence SD: Transit peptide mutations that impair in vivo and in vitro chloroplast protein import do not affect accumulation of the gamma subunit of chloroplast ATPase. Plant Physiol 116: 1179–1190 (1998).

    PubMed  Google Scholar 

  21. Kouranov A, Schnell DJ: Protein translocation at the envelope and thylakoid membranes of chloroplasts. J Biol Chem 271: 31009–31012 (1996).

    PubMed  Google Scholar 

  22. Kunkel TA, Bebenek K, McClary J: Efficient site-directed mutagenesis using uracil-containing DNA. Meth Enzymol 204: 125–139 (1991).

    PubMed  Google Scholar 

  23. Kuntz M, Simons J, Schell J, Schreier PH: Targeting of proteins to chloroplasts in transgenic tobacco by fusion to mutated transit peptide. Mol Gen Genet 205: 454–460 (1986).

    Google Scholar 

  24. Lawrence SD, Kindle KL: Alterations in the Chlamydomonas plastocyanin transit peptide have distinct effects on in vitro import and in vivo protein accumulation. J Biol Chem 272: 20357–20363 (1997).

    PubMed  Google Scholar 

  25. Li HH, Quinn J, Culler D, Dreyfuss BW, Girard-Bascou J, Merchant S: Molecular genetic analysis of plastocyanin biosynthesis in Chlamydomonas reinhardtii. J Biol Chem 271: 31283–31289 (1996).

    PubMed  Google Scholar 

  26. Ma Y, Kouranov A, LaSala SE, Schnell DJ: Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope. J Cell Biol 134: 315–327 (1996).

    PubMed  Google Scholar 

  27. Maniatis T, Fritsch EM, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, NY (1982).

    Google Scholar 

  28. Merchant S, Bogorad L: Regulation by copper of the expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardtii. Mol Cell Biol 6: 462–469 (1986).

    PubMed  Google Scholar 

  29. Merchant S, Hill K, Kim JH, Thompson J, Zaitlin D, Bogorad L: Isolation and characterization of a complementary DNA clone for algal pre-apoplastocyanin. J Biol Chem 265: 12372–12379 (1990).

    PubMed  Google Scholar 

  30. Perry SE, Buvinger WE, Bennett J, Keegstra K: Synthetic analogues of a transit peptide inhibit binding or translocation of chloroplastic precursor proteins. J Biol Chem 266: 11882–11889 (1991).

    PubMed  Google Scholar 

  31. Perry SE, Keegstra K: Envelope membrane proteins that interact with chloroplastic precursor proteins. Plant Cell 6: 93–105 (1994).

    PubMed  Google Scholar 

  32. Pilon M, Rietveld AG, Weisbeek PJ, DeKruijff B: Secondary structure and folding of a functional chloroplast precursor protein. J Biol Chem 267: 19907–dy19913 (1992).

    PubMed  Google Scholar 

  33. Pilon M, Wienk H, Sips W, de Swaaf M, Talboom I, van't Hof R, de Korte-Kool G, Demel R, Weisbeek P, de Kruijff B: Functional domains of the ferredoxin transit sequence involved in chloroplast import. J Biol Chem 270: 3882–3893 (1995).

    PubMed  Google Scholar 

  34. Quinn J, Li HH, Singer J, Morimoto B, Mets L, Kindle K, Merchant S: The plastocyanin-deficient phenotype of Chlamydomonas ac-208 results from a frame-shift mutation in the nuclear gene encoding preapoplastocyanin. J Biol Chem 268: 7832–7841 (1993).

    PubMed  Google Scholar 

  35. Quinn JM, Merchant S: Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7: 623–638 (1995).

    PubMed  Google Scholar 

  36. Reiss B, Wasmann CC, Schell J, Bohnert HJ: Effect of mutations on the binding and translocation functions of a chloroplast transit peptide. Proc Natl Acad Sci USA 86: 886–890 (1989).

    PubMed  Google Scholar 

  37. Robinson C, Klösgen RB: Targeting of proteins into and across the thylakoid membrane-A multitude of mechanisms. Plant Mol Biol 26: 15–24 (1994).

    PubMed  Google Scholar 

  38. Schnell DJ, Blobel G, Pain D: Signal peptide analogs derived from two chloroplast precursors interact with the signal recognition system of the chloroplast envelope. J Biol Chem 266: 3335–3342 (1991).

    PubMed  Google Scholar 

  39. Silva-Filho MD, Chaumont F, Leterme S, Boutry M: Mitochondrial and chloroplast targeting sequences in tandem modify protein import specificity into plant organelles. Plant Mol Biol 30: 769–780 (1996).

    PubMed  Google Scholar 

  40. Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P: The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46: 365–376 (1986).

    Article  PubMed  Google Scholar 

  41. Stern DB, Radwanski ER, Kindle KL: A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3: 285–297 (1991).

    Article  PubMed  Google Scholar 

  42. Theg SM, Scott SV: Protein import into chloroplasts. Trends Cell Biol 3: 186–190 (1993).

    PubMed  Google Scholar 

  43. Valentin E, Walker ME, Reid GA: A mutant precursor protein is poorly targeted to mitochondria and interferes in vivo with the import of other mitochondrial polypeptides in Saccharomyces cerevisiae. Curr Microbiol 23: 75–80 (1991).

    Google Scholar 

  44. von Heijne G, Steppuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545 (1989).

    PubMed  Google Scholar 

  45. Waegemann K, Soll J: Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem 271: 6545–6554 (1996).

    PubMed  Google Scholar 

  46. Wasmann CC, Reiss B, Bartlett SG, Bohnert HJ: The importance of the transit peptide and the transported protein for protein import into chloroplasts. Mol Gen Genet 205: 446–453 (1986).

    Google Scholar 

  47. Wu C, Seibert FS, Ko K: Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. J Biol Chem 269: 32264–32271 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kindle, K.L. Amino-terminal and hydrophobic regions of the Chlamydomonas reinhardtii plastocyanin transit peptide are required for efficient protein accumulation in vivo. Plant Mol Biol 38, 365–377 (1998). https://doi.org/10.1023/A:1006025606330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006025606330

Navigation