Skip to main content
Log in

Assessment of the metabolic activity of Acremonium chrysogenum using Acridine Orange

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A method is described for the assessment of the metabolic activity of the filamentous fungus Acremonium chrysogenum using the fluorescent dye Acridine Orange. Changes in metabolic activity are indicated by a reversible red-green shift in the colour of the dye, quantifiable by image analysis. A. chrysogenum mycelia exhibited an overwhelmingly green colour in circumstances leading to high substrate uptake, while under carbon starvation they appeared orange-red. It is believed these colour changes reflected changes in internal pH. The method provides a visual tool for the investigation of the metabolic behaviour of filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agger T, Spohr AB, Carlsen M, Nielsen J (1998) Growth and product formation of Aspergillus oryzae during submerged cultivations: verification of a morphologically structured model using fluorescent probes. Biotechnol. Bioeng. 57: 321–329.

    Google Scholar 

  • Bowman BJ, Bowman EJ (1986) HC-ATPases from mitochondria, plasma membranes and vacuoles of fungal cells. J. Memb. Biol. 94: 83–97.

    Google Scholar 

  • Chang A, Slayman CW (1991) Maturation of the yeast plasma membrane [HC] ATPase involves phosphorylation during intracellular transport. J. Cell. Biol. 115: 289–295.

    Google Scholar 

  • Cox PW, Thomas CR (1999) Assessment of the activity of filamentous fungi using Mag fura. Mycol. Res. 103: 757–763.

    Google Scholar 

  • Dean RT, Jessup W, Roberts CR (1984) Effects of exogenous amines on mammalian cells, with particular reference to membrane flow. Biochem. J. 217: 27–40.

    Google Scholar 

  • Freudenberg S, Fasold K-I, Müller SR, Siedenberg D, Kretzmer G, Schügerl K, Giuseppin M (1996) Fluorescent microscopic investigation of Aspergillus awamori growing on synthetic and complex media and producing xylanase. J. Biotechnol. 46: 265–273.

    Google Scholar 

  • Hesse SJA, Ruijter GJG, Dijkema C, Visser J (2000) Measurement of intracellular (compartmental) pH by P-31 NMR in Aspergillus niger. J. Biotechnol. 77: 5–15.

    Google Scholar 

  • Huang SS, Koh HA, Huang JS (1997) Suramin enters and accumulates in low pH intracellular compartments of v-sis transformed NIH 3T3 cells. FEBS Lett. 416: 297–301.

    Google Scholar 

  • Karaffa L, Sándor E, Kozma J, Szentirmai A (1996) Cephalosporin C production, morphology and alternative respiration of Acremonium chrysogenum in glucose-limited chemostat. Biotechnol. Lett. 18: 701–706.

    Google Scholar 

  • Karaffa L, Sándor E, Kozma J, Szentirmai A (1997) Methionine enhances sugar consumption, fragmentation, vacuolation and cephalosporin C production in Acremonium chrysogenum. Proc. Biochem. 32: 495–499.

    Google Scholar 

  • Karaffa L, Sándor E, Kozma J, Kubicek CP, Szentirmai A (1999) The role of the alternative respiratory pathway in the stimulation of cephalosporin C formation by soybean oil in Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 51: 633–638.

    Google Scholar 

  • Kozma J, Karaffa L (1996) Effect of oxygen on the respiratory system and cephalosporin C production in Acremonium chrysogenum. J. Biotechnol. 48: 59–66.

    Google Scholar 

  • Macrí F, Zancani M, Petrussa A, Dell'Antone P, Vianello A (1995) Pyrophosphate and HC-pyrophosphatase maintain the vacuolar proton gradient in metabolic inhibitor-treated Acer pseudoplatanus cells. Biochim. Biophys. Acta 1229: 323–328.

    Google Scholar 

  • Mains RE, May V (1988) The role of low pH intracellular compartment in the processing, storage and secretion of ACTH and endorphin. J. Biol. Chem. 263: 7887–7894.

    Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Ann. Rev. Biochem. 55: 663–700.

    Google Scholar 

  • Millot C, Millot J-M, Morjani H, Desplaces A, Manfait M (1997) Characterization of acidic vesicles in multidrug-resistant and sensitive cancer cells by Acridine Orange staining and confocal microspectrofluorometry. J. Histochem. Cytochem. 45: 1255–1264.

    Google Scholar 

  • Paul GC, Thomas CR (1998) Characterisation of mycelial morphology using image analysis. In: Schügerl K, ed. Adv. Biochem. Eng./Biotechnol. 60: 2–59.

  • Ramirez JA, Vacata V, McCusker JH, Haber JE, Mortimer RK, Owen WG, Lecar H (1989) ATP-sensitive KCchannels in plasma membrane HC-ATPase mutant of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86: 7866–7870.

    Google Scholar 

  • Rost FWD, Shepherd VA, Ashford AE (1995) Estimation of vacuolar pH in actively growing hyphae of the fungus Pissolithus tinctorius. Mycol. Res. 95: 549–533.

    Google Scholar 

  • Rothman JH, Yamashiro CT, Raymond CT, Kane PM, Stevens TH (1989) Acidification of the lysosome-like vacuole and vacuolar H+ ATPase are deficient in two yeast mutants that fail to short vacuolar proteins. J. Cell. Biol. 109: 93–100.

    Google Scholar 

  • Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett. 156: 11–14.

    Google Scholar 

  • Serrano R, Kielland-Brandt C, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (NaC+KC), KC-and CaCC-ATPases. Nature 319: 689–693.

    Google Scholar 

  • Vanhoutte B, Pons MN, Thomas CR, Louvel L, Vivier H (1995) Characterization of Penicillium chrysogenum physiology in submerged cultures by color and monochrome image analysis. Biotechnol. Bioeng. 48: 1–11.

    Google Scholar 

  • Yamashiro CT, Kane PM, Wolczyk DF, Breston RA, Stevens TH (1990) Role of vacuolar acidification in protein sorting and zymogen activation: genetic analysis of the yeast vacuolar translocating ATPase. Mol. Cell. Biol. 10: 3737–3749.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sándor, E., Karaffa, L., Paul, G.C. et al. Assessment of the metabolic activity of Acremonium chrysogenum using Acridine Orange. Biotechnology Letters 22, 693–697 (2000). https://doi.org/10.1023/A:1005687720264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005687720264

Navigation