Skip to main content
Log in

Stoichiometry of Energy Coupling by Proton-Translocating ATPases: A History of Variability

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

One of the central energy-coupling reactions in living systems is the intraconversion of ATP with a transmembrane proton gradient, carried out by proton-translocating F- and V-type ATPases/synthases. These reversible enzymes can hydrolyze ATP and pump protons, or can use the energy of a transmembrane proton gradient to synthesize ATP from ADP and inorganic phosphate. The stoichiometry of these processes (H+/ATP, or coupling ratio) has been studied in many systems for many years, with no universally agreed upon solution. Recent discoveries concerning the structure of the ATPases, their assembly and the stoichiometry of their numerous subunits, particularly the proton-carrying proteolipid (subunit c) of the FO and V0 sectors, have shed new light on this question and raise the possibility of variable coupling ratios modulated by variable proteolipid stoichiometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994). Nature (London) 370, 621-8.

    Google Scholar 

  • Alexandre, A., Reynafarje, B., and Lehninger, A. L. (1978). Proc. Natl. Acad. Sci. USA 75, 5296-5300.

    Google Scholar 

  • Arai, H., Terres, G., Pink, S., and Forgac, M. (1988). J. Biol. Chem. 263, 8796-8802.

    Google Scholar 

  • Azzone, G. F., Pozzan, T., Massari, S., and Bragadin, M. (1978a). Biochim. Biophys. Acta 501, 296-306.

    Google Scholar 

  • Azzone, G. F., Pozzan, T., and Massari, S. (1978b). Biochim. Biophys. Acta 501, 307-316.

    Google Scholar 

  • Azzone, G. F., Pozzan, T., Viola, E., and Arslan, P. (1978c). Biochim. Biophys. Acta 501, 317-329.

    Google Scholar 

  • Baccarini-Melandri, A., Casadio, R., and Melandri, B. A. (1977). Eur. J. Biochem. 78, 389-402.

    Google Scholar 

  • Bennett, A. B., and Spanswick, R. M. (1984). Plant Physiol. 74, 545-548.

    Google Scholar 

  • Berry, E. A., and Hinkle, P. C. (1983). J. Biol. Chem. 258, 1474-1468.

    Google Scholar 

  • Booth, I. R. (1985). Microbiol. Rev. 49, 359-378.

    Google Scholar 

  • Boyer, P. D. (1989). Faseb J. 3, 2164-2178.

    Google Scholar 

  • Boyer, P. D. (1997). Annu. Rev. Biochem. 66, 717-749.

    Google Scholar 

  • Brand, M. D. (1977). Biochem. Soc. Trans. 5, 1615-1620.

    Google Scholar 

  • Brusilow, W. S. A. (1987). J. Bacteriol. 169, 4984-4990.

    Google Scholar 

  • Capaldi, R. A., Aggeler, R., Turina, P., and Wilkens, S. (1994). TIBS 19, 284-289.

    Google Scholar 

  • Clark, A. J., Cotton, N. P. J., and Jackson, J. M. (1983). Biochim. Biophys. Acta 723, 440-453.

    Google Scholar 

  • Cross, R. L., and Taiz, L. (1990). FEBS Lett. 259, 227-229.

    Google Scholar 

  • Davenport, J. W., and McCarty, R. E. (1981). J. Biol. Chem. 256, 8947-8954.

    Google Scholar 

  • Davenport, J. W., and McCarty, R. E. (1984). Biochim. Biophys. Acta 851, 136-145.

    Google Scholar 

  • Davies, J. M., Hunt, I., and Sanders, D. (1994). Proc. Natl. Acad. Sci. USA 91, 8547-8551.

    Google Scholar 

  • Davies, J. M., Sanders, J., and Gradmann, D. (1996). J. Membr. Biol. 150, 231-241.

    Google Scholar 

  • Deckers-Hebestreit, G., and Altendorf, K. (1996). Annu. Rev. Microbiol. 50, 791-824.

    Google Scholar 

  • Dewey, T. G., and Hammes, G. G. (1981). J. Biol. Chem. 256, 8941-8946.

    Google Scholar 

  • Ferguson, S. J., and Sorgato, M. C. (1982). Annu. Rev. Biochem. 51, 185-217.

    Google Scholar 

  • Forgac, M. (1999). J. Bioenerg. Biomembr. 31, 57-66.

    Google Scholar 

  • Foster, D. L., and Fillingame, R. H. (1979). J. Biol. Chem. 254, 8230-8236.

    Google Scholar 

  • Foster, D. L., and Fillingame, R. H. (1982). J. Biol. Chem. 257, 2009-2015.

    Google Scholar 

  • Gogarten, J. P., Starke, T., Kibak, H., Fishman, J., and Taiz, L. (1992). J. Exp. Biol. 172, 137-147.

    Google Scholar 

  • Grabe, M., Wang, H., and Oster, G. (2000). Biophys. J. 78, 2798-2813.

    Google Scholar 

  • Gräber, P., and Witt, H. T. (1976). Biochim. Biophys. Acta 423, 141-163.

    Google Scholar 

  • Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997). J. Biol.Chem. 272, 4795-4803.

    Google Scholar 

  • Hirata, T., Nakamura, N., Omote, H., Wada, Y., and Futai, M. (2000). J. Biol. Chem. 275, 386-389.

    Google Scholar 

  • Holian, A., and Wilson, D. F. (1980). Biochemistry 19, 4213-4221.

    Google Scholar 

  • Izawa, S. (1970). Biochim. Biophys. Acta 223, 165-173.

    Google Scholar 

  • Jensen, B. D., Gunter, K. K., and Gunter, T. E. (1986). Arch. Biochem. Biophys. 248, 79-83.

    Google Scholar 

  • Jensen, P. R., Michelsen, O., and Westerhoff, H. V. (1995). J. Bioenerg. Biomembr. 27, 543-554.

    Google Scholar 

  • Johnson, R. G., Beers, M. F., and Scarpa, A. (1982). J. Biol. Chem. 257, 10701-10707.

    Google Scholar 

  • Jones, P. C., and Fillingame, R. H. (1998). J. Biol. Chem. 273, 29701-29705.

    Google Scholar 

  • Kakinuma, Y., Yamato, I., and Murata, T. (1999). J. Bioenerg. Biomembr. 31, 7-14.

    Google Scholar 

  • Kane, P. M. (1999). J. Bioenerg. Biomembr. 31, 3-6.

    Google Scholar 

  • Kashket, E. R. (1982). Biochemistry 21, 5534-5538.

    Google Scholar 

  • Kashket, E. R. (1983). FEBS Lett. 154, 343-346.

    Google Scholar 

  • Kashket, E. R. (1985). Annu. Rev. Micro. 39, 219-242.

    Google Scholar 

  • Kasho, V. N., and Boyer, P. D. (1989). Proc. Natl. Acad. Sci. USA 86, 8708-8711.

    Google Scholar 

  • Ketcham, S. R., Davenport, J. W., Warncke, K., and McCarty, R. E. (1984). J. Biol. Chem. 259, 7286-7293.

    Google Scholar 

  • Krenn, B. E., van Walraven, H. S., Scholts, M. J. C., and Kraayenhof, R. (1993). Biochem. J. 294, 705-709.

    Google Scholar 

  • Lüger, P. (1991). Electrogenic Ion Pumps, Sinauer Associates: Sunderland, MA, U.S.A.

    Google Scholar 

  • Lemaire, C., Girault, G., and Galmiche, J. M. (1985). Biochim. Biophys. Acta 807, 285-292.

    Google Scholar 

  • Lemasters, J. J. (1984). J. Biol. Chem. 259, 13123-13130.

    Google Scholar 

  • Low, R., Rockel, B., Kirsch, M., Ratajczak, R., Hortensteiner, S., Martinoia E., Luttge, U., and Rausch, T. (1996). Plant Physiol. 110, 259-265.

    Google Scholar 

  • Luvisetto, S., Pietrobon, D., and Azzone, G. F. (1987). Biochemistry 26, 7332-7338.

    Google Scholar 

  • Maloney, P. C., and Hansen, F. C. 3rd. (1982). J. Membr. Biol. 66, 63-75.

    Google Scholar 

  • Maloney, P. C. (1983). J. Bacteriol. 153, 1461-1470.

    Google Scholar 

  • McCarty, R. E., and Portis, A. R. Jr. (1976). Biochemistry 15, 5110-5114.

    Google Scholar 

  • Mitchell, P. (1966). Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin.

  • Mitchell, P., and Moyle, J. (1969). Eur. J. Biochem. 7, 471-484.

    Google Scholar 

  • Moriyama Y., and Nelson, N. (1988). The Ion Pumps: Structure, Function, and Regulation, pp. 387-394.

  • Moyle, J., and Mitchell, P. (1973). FEBS Lett. 30, 317-320.

    Google Scholar 

  • Müller, V., Ruppert, C., and Lemker, T. (1999). J. Bioenerg. Biomembr. 31, 15-28.

    Google Scholar 

  • Müller, D. J., Stahlberg, H., Engel, A., Seelert, H., and Dencher, N. (2000). Biophys. J. 78, 280A.

    Google Scholar 

  • Nalin, C. M., and McCarty, R. E. (1984). J. Biol. Chem. 259, 7275-7280.

    Google Scholar 

  • Nelson, H., and Nelson, N. (1989). FEBS Lett. 247, 147-153.

    Google Scholar 

  • Nelson, N. (1992). Biochim. Biophys. Acta 1100, 109-124.

    Google Scholar 

  • Nicholls, D. G., and Bernson, V. S. M. (1977). Eur. J. Biochem. 75, 601-612.

    Google Scholar 

  • Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. Jr. (1997). Nature (London) 386, 299-302.

    Google Scholar 

  • Ogawa, S., and Lee, T. M. (1984). J. Biol. Chem. 259, 10004-10011.

    Google Scholar 

  • Oster, G., Wang H., and Grabe, M. (2000). Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 523-528.

    Google Scholar 

  • Patlak, C. S. (1957). Bull. Math. Biophys. 19, 209-235.

    Google Scholar 

  • Pedersen, P. L., and Amzel, L. M. (1993). J. Biol. Chem. 268, 9937-9940.

    Google Scholar 

  • Pedersen, P. L., Schwerzmann, K, and Cintron, N. (1981). Curr. Top. Bioenerg. 11, 149-199.

    Google Scholar 

  • Perlin, D. S., San Fransisco, M. J. D., Slayman, C. W., and Rosen, B. P. (1986). Arch. Biochem. Biophys. 248, 53-61.

    Google Scholar 

  • Petty, K. M., and Jackson, J. B. (1979a). Biochim. Biophys. Acta 547, 463-473.

    Google Scholar 

  • Petty, K. M., and Jackson, J. B. (1979b). Biochim. Biophys. Acta 547, 474-483.

    Google Scholar 

  • Pietrobon, D., and Caplan, S. R. (1985). Biochemistry 24, 5764-5776.

    Google Scholar 

  • Pietrobon, D., Zoratti, M., and Azzone, G. F. (1983). Biochim. Biophys. Acta 723, 317-321.

    Google Scholar 

  • Pietrobon, D., Zoratti, M., Azzone, G. F., and Caplan, S. R. (1986). Biochemistry 25, 767-775.

    Google Scholar 

  • Pietrobon, D., Luvisetto, S., and Azzone, G. F. (1987). Biochemistry 26, 7339-7347.

    Google Scholar 

  • Pitard, B., Richard, P., Dunach, M., Rigaud, J. L. (1996). Eur. J. Biochem. 235, 779-788.

    Google Scholar 

  • Portis, A. R., Jr., and McCarty, R. E. (1974). J. Biol. Chem. 249, 6250-6254.

    Google Scholar 

  • Portis, A. R., Jr., and McCarty, R. E. (1976). J. Biol. Chem. 251, 1610-1617.

    Google Scholar 

  • Possmayer, F. E., and Gräber, P. (1994). J. Biol. Chem. 269, 1896-1904.

    Google Scholar 

  • Pullman, M. E., and Monroy, G. C. (1963). J. Biol. Chem. 238, 3762-3769.

    Google Scholar 

  • Rahlfs, S., Aufurth, S., and Müller, V. (1999). J. Biol. Chem. 274, 33999-34004.

    Google Scholar 

  • Rastogi, V. K., and Girvin, M. E. (1999). Nature (London) 402, 263-268.

    Google Scholar 

  • Rottenberg, H., and Gutman, M. (1977). Biochemistry 16, 3220-3227.

    Google Scholar 

  • Ruppert, C., Kavermann, H., Wimmers, S., Schmid, R., Kellermann, J., Lottspeich, F., Huber, H., Stetter, K. O., and Müller, V. (1999). J. Biol. Chem. 274, 25281-25284.

    Google Scholar 

  • Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y., and Futai, M. (1999). Science 286, 1722-1724.

    Google Scholar 

  • Schaefer, E. M., Hartz, D., Gold, L., and Simoni, R. D. (1989). J. Bacteriol. 171, 3901-3908.

    Google Scholar 

  • Schemidt, R. A., Hsu, D. K. W., Deckers-Hebestreit, G., Altendorf, K., and Brusilow, W. S. A. (1995). Arch. Biochem. Biophys. 323, 423-428.

    Google Scholar 

  • Schemidt, R. A., Qu, J., Williams, J. R., and Brusilow, W. S. A. (1998). J. Bacteriol. 180, 3205-3208.

    Google Scholar 

  • Schmidt, A. L., and Briskin, D. P. (1993a). Arch. Biochem. Biophys. 301, 165-173.

    Google Scholar 

  • Schmidt, A. L., and Briskin, D. P. (1993b). Arch. Biochem. Biophys. 306, 407-414.

    Google Scholar 

  • Scholes, T. A., and Hinkle, P. C. (1984). Biochemistry 23, 3341-3345.

    Google Scholar 

  • Senior, A. E. (1988). Physiol. Rev. 68, 177-231.

    Google Scholar 

  • Solomon, K. A., and Brusilow, W. S. A. (1988). J. Biol. Chem. 263, 5402-5407.

    Google Scholar 

  • Sorgato, M. C., Galiazzo, F., Panato, L., and Ferguson, S. J. (1982). Biochim. Biophys. Acta 682, 184-188.

    Google Scholar 

  • Stevens, T. H., and Forgac, M. (1997). Annu. Rev. Cell Develop. Biol. 13, 779-808.

    Google Scholar 

  • Stock, D., Leslie, A. G. W., and Walker, J. E. (1999). Science 286, 1700-1704.

    Google Scholar 

  • Thayer, W. S., and Hinkle, P. C. (1973). J. Biol. Chem. 248, 5395-5402.

    Google Scholar 

  • Tomashek, J. J. (1997). Dissertation. University of California, Davis.

  • Van Dam, K., Westerhoff, H. V., Krab, K., Van der Meer, R., and Arents, J. C. (1980). Biochim. Biophys. Acta 591, 240-250.

    Google Scholar 

  • Van der Bend, R. L., Cornelissen, J. B. W. J., Berden, J. A., and Van Dam, K. (1984). Biochim. Biophys. Acta 767, 87-101.

    Google Scholar 

  • van Walraven, H. S., Haak, N. P., Krab, K., and Kraayenhof, R. (1986). FEBS Lett. 208, 138-142.

    Google Scholar 

  • van Walraven, H. S., Strotmann, H., Schwarz, O., and Rumberg, B. (1996). FEBS Lett. 379, 309-313.

    Google Scholar 

  • Vik, S. B., and Antonio, B. J. (1994). J. Biol. Chem. 269, 30364-30369.

    Google Scholar 

  • Vink, R., Bendall, M. R., Simpson, S. J., and Rogers, P. J. (1984). Biochemistry 23, 3667-3675.

    Google Scholar 

  • Westerhoff, H. V., Colen, A. M., and Van Dam, K. (1983a). Biochem. Soc. Trans. 11, 81-85.

    Google Scholar 

  • Westerhoff, H. V., Hellingwerf, K. J., and Van Dam, K. (1983b) 80, 305-309.

  • Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzone, G. F., and Kell, D. B. (1984a). FEBS Lett. 165, 1-5.

    Google Scholar 

  • Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzone, G. F., and Kell, D. B. (1984b). Biochem. Biophys. Acta 768, 257-292.

    Google Scholar 

  • Yokoyama, K., Ohkuma, S., Taguchi, H., Yasunaga, T., Wakabayashi, T., and Yoshida, M. (2000). J. Biol. Chem. 275, 13955-13961.

    Google Scholar 

  • Zoratti, M., Favaron, M., Pietrobon, D., and Azzone, G. F. (1986). Biochemistry 25, 760-767.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomashek, J.J., Brusilow, W.S.A. Stoichiometry of Energy Coupling by Proton-Translocating ATPases: A History of Variability. J Bioenerg Biomembr 32, 493–500 (2000). https://doi.org/10.1023/A:1005617024904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005617024904

Navigation