Skip to main content
Log in

Dynamics of Algal Secondary Metabolites in Two Species of Sea Hare

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The function of acquired algal secondary metabolites in sea hares is the subject of debate, in part because the dynamics/processing of metabolites by sea hares is poorly understood. This study investigates the dynamics of red algal secondary metabolites in two sea hares, Aplysia parvula and Aplysia dactylomela. Secondary metabolite levels were quantified for the dietary red algae Laurencia obtusa and Delisea pulchra and for sea hares collected from these seaweeds in the field. The patterns and dynamics of algal secondary metabolites were further investigated in the laboratory by quantitative analysis of secondary metabolites in sea hares grown on diets of L. obtusa, D. pulchra, or the green alga Ulva sp. Sea hares accumulated the most abundant metabolites from each red alga, the terpene palisadin A from L. obtusa, and the halogenated furanone 3 from D. pulchra, and stored a greater proportion of these metabolites than other algal metabolites. A. parvula accumulated D. pulchra metabolites at much higher levels than L. obtusa metabolites. A. dactylomela accumulated similar concentrations of L. obtusa metabolites to A. parvula. The loss of L. obtusa metabolites by A. dactylomela matched that expected for dilution of metabolites via growth of the sea hares. However, the loss of L. obtusa metabolites by A. parvula was faster than predicted for growth alone, suggesting that metabolites were actively metabolized or excreted. Data for the loss of D. pulchra metabolites by A. parvula was equivocal. The secretions of A. parvula fed D. pulchra or L. obtusa were analyzed for the presence of algal secondary metabolites to investigate one possible path of excretion. L. obtusa secondary metabolites were detected in the mucous and opaline secretions of A. parvula, but D. pulchra metabolites were not detected in any secretions. The deployment of L. obtusa secondary metabolites in secretions by A. parvula may explain the more rapid rate of loss of these compounds and is consistent with a possible defensive role for acquired metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Avila, C. 1995. Natural products of opisthobranch molluscs: A biological review. Oceanogr. Mar. Biol. Annu. Rev. 33:487–559.

    Google Scholar 

  • Bakus, G. J., Targett, N. M., and Schulte, B. 1986. Chemical ecology of marine organisms: An overview. J. Chem. Ecol. 12:951–987.

    Google Scholar 

  • Battista, P. J. 1995. Antifouling compounds from the red alga Laurencia obtusa. Honors thesis. University of Newcastle, Australia.

  • Carefoot, T. H. 1987. Aplysia: Its biology and ecology. Oceanogr. Mar. Biol. Annu. Rev. 25:167–284.

    Google Scholar 

  • Cimino, G., de Rosa, S., de Stefano, S., and Sodano, G. 1982. The chemical defence of four Mediterranean nudibranchs. Comp. Biochem. Physiol. B 73:471–474.

    Google Scholar 

  • de Nys, R., Wright, A. D., Konig, G. M., and Stricher, O. 1993. New halogenated furanones from the marine alga Delisea pulchra. Tetrahedron 49:11213–11220.

    Google Scholar 

  • de Nys, R., Steinberg, P. D., Rogers, C. N., Charlton, T. S., and Duncan, M. W. 1996. Quantitative variation of secondary metabolites in the sea hare Aplysia parvula and its host plant Delisea pulchra. Mar. Ecol. Progr. Ser. 130:135–146.

    Google Scholar 

  • de Nys, R., Dworjanyn, S. A., and Steinberg, P. D. 1998. A new method for determining surface concentrations of marine natural products on seaweeds. Mar. Ecol. Prog. Ser. 162:79–87.

    Google Scholar 

  • Di Marzo, V., Marin, A., Vardaro, R. R., de Petrocellis, L., Villani, G., Cimino, G. 1993. Histological and biochemical bases of defense mechanisms in four species of Polybranchioidea ascoglossan molluscs. Mar. Biol. 117:367–380.

    Google Scholar 

  • Faulkner, D. J. 1992. Chemical defences in marine molluscs, pp. 119-163, in V. J. Paul (ed.). Ecological Roles of Marine Natural Products. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Faulkner, D. J., and Ghiselin, M. T. 1983. Chemical defence and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar. Ecol. Prog. Ser. 13:295–301.

    Google Scholar 

  • Fontana, A., Gimenez, F., Marin, A., Mollo, E., and Cimino, G. 1994. Transfer of secondary metabolites from the sponges Dysidea fragilis and Pleraplysilla spinifera to the mantle dermal formations of the nudibranch Hypserlodoris webbi. Experientia 50:510–516.

    Google Scholar 

  • Gavagnin, M., Marin, A., Castelluccio, F., Villani, G., and Cimino, G. 1994. Defensive relationships between Caulerpa prolifera and its shelled sacoglossan predators. J. Exp. Mar. Biol. Ecol. 175:197–210.

    Google Scholar 

  • Karuso, P. 1987. Chemical ecology of nudibranchs, pp. 32-60, in P. J. Scheuer (ed.). Bioorganic Marine Chemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Nolen, T. G., Johnson, P. M., Kicklighter, C. E., and Capo, T. 1995. Ink secretion by the marine snail Aplysia californica enhances its ability to escape a natural predator. J. Comp. Physiol. A 176:239–254.

    Google Scholar 

  • Paul, V. J., and Pennings, S. C. 1991. Diet-derived chemical defences in the sea hare Stylocheilus longicauda. J. Exp. Mar. Biol. Ecol. 151:227–243.

    Google Scholar 

  • Paul, V. J., and Van Alstyne, K. L. 1988. Use of ingested algal diterpenoids by Elysia halimedae as antipredator defences. J. Exp. Mar. Biol. Ecol. 119:15–29.

    Google Scholar 

  • Paul, V. J., Wylie, C. R., and Sanger, H. R. 1989. Effects of algal chemical defences toward different coral-reef herbivorous fishes, pp. 73-78, in J. H. Choat (ed.). Proceedings 6th International Coral Reef Symposium. James Cook University, Townsville, Australia.

  • Pawlik, J. R., Kernan, M. R., Tadeusz, F. M., Harper, M. K., and Faulkner, D. J. 1988. Defensive chemicals of the Spanish dancer nudibranch Hexabranchus sanquineus and its egg ribbons: Macrolides derived from a sponge diet. J. Exp. Mar. Biol. Ecol. 119:99–109.

    Google Scholar 

  • Pennings, S. C., and Carefoot, T. H. 1995. Post-ingestive consequences of consuming secondary metabolites in sea hares. Comp. Biochem. Physiol. C 111:249–256.

    Google Scholar 

  • Pennings, S. C., and Paul, V. J. 1993. Sequestration of dietary secondary metabolites by three species of sea hares: Location, specificity and dynamics. Mar. Biol. 117:535–546.

    Google Scholar 

  • Pennings, S. C., Weiss, A. M., and Paul, V. J. 1996. Secondary metabolites of the cyanobacterium Microcoleus lyngbyaceus and the sea hare Stylocheilus longicauda: Palatability and toxicity. Mar. Biol. 126:735–743.

    Google Scholar 

  • Pennings, S. C., Paul, V. J., Dunbar, D. C., Hamann, M. T., Lumbang, W. A., Novack, B., Jacobs, R. S. 1999. Unpalatable compounds in the marine gastropod Dolabella auricularia: Distribution and effect of diet. J. Chem. Ecol. 25:735–755.

    Google Scholar 

  • Pirio, L. J. 1983. Studies in red algal metabolism. PhD thesis. University of New South Wales, Sydney.

  • Quinoa, E., Castedo, L., Riguera, R. 1989. The halogenated monoterpenes of Aplysia punctata. A comparitive study. Comp. Biochem. Physiol. 92B:99–101.

    Google Scholar 

  • Rogers, C. N., Steinberg, P. D., and de Nys, R. 1995. Factors associated with oligophagy in two species of sea hares. J. Exp. Mar. Biol. Ecol. 192:47–73.

    Google Scholar 

  • Rogers, C. N., Williamson, J. E., Carson, D. G., and Steinberg, P. D. 1998. Diel vertical movement by mesograzers on seaweeds. Mar. Ecol. Prog. Ser. 166:301–306.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3rd ed. W. H. Freeman and Company, New York.

    Google Scholar 

  • Stallard, M. O., and Faulkner, D. J. 1974. Chemical constituents of the digestive gland of the sea hare Aplysia californica-1. Importance of diet. Comp. Biochem. Physiol. B 49:23–35.

    Google Scholar 

  • Thompson, J. E., Walker, R. P., Wratten, S. J., and Faulkner, D. J. 1982. A chemical defence mechanism for the nudibranch Cadlina luteomarginata. Tetrahedron 38:1865–1873.

    Google Scholar 

  • Underwood, A. J. 1981. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. Annu. Rev. 19:513–605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, C.N., De Nys, R., Charlton, T.S. et al. Dynamics of Algal Secondary Metabolites in Two Species of Sea Hare. J Chem Ecol 26, 721–744 (2000). https://doi.org/10.1023/A:1005484306931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005484306931

Navigation