Skip to main content
Log in

Thermodynamics of Protein Model Compounds: Apparent and Partial Molar Heat Capacities and Volumes of Several Cyclic Dipeptides in Water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities and heat capacity ratios of aqueous solutions of c-glycylglycine,c-alanylalanine, and c-sarcosylsarcosine have been measured at 15, 25, 40, and55 °C. These data have been used to calculate apparent molar volumes andapparent molar heat capacities, which, in turn, have been used in the calculationof partial molar properties at infinite dilution. The merits of using thesethermodynamic data in the calculation of glycyl group and alanine side chain groupcontributions are discussed with respect to the modeling of the thermodynamicproperties of denatured proteins in aqueous solution. The study concludes thatc-glycylglycine may not be the most suitable model compound from which toobtain the thermodynamic properties of the glycyl group. However, it alsoindicates that the cyclic dipeptides merit further investigation with respect to thethermodynamic properties of protein side chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. J. Cohn and J. T. Edsall, Proteins, Amino Acids and Peptides (Hafner, New York, 1965).

    Google Scholar 

  2. M. Iqbal and R. E. Verrall, J. Biol. Chem. 263, 4159 (1988).

    Google Scholar 

  3. M. Häckel, H. J. Hinz, and G. R. Hedwig, Thermochim. Acta 308, 23 (1998).

    Google Scholar 

  4. M. Häckel, H. J. Hinz, and G. R. Hedwig, Biophys. Chem. 73, 163 (1998).

    Google Scholar 

  5. T. Vogl, H-J. Hinz, and G. R. Hedwig, Biophys. Chem. 54, 261 (1995).

    Google Scholar 

  6. G. R. Hedwig, J. Chem. Soc. Faraday Trans. 89, 2761, (1993).

    Google Scholar 

  7. J. F. Reading and G. R. Hedwig, J. Chem. Soc. Faraday Trans. 86, 3117 (1990).

    Google Scholar 

  8. G. I. Makhatadze and P. L. Privalov, J. Mol. Biol. 213, 375 (1990).

    Google Scholar 

  9. G. I. Makhatadze and P. L. Privalov, In Physical Properties of Polymers Handbook, J. E. Mark, ed. (Academic Press, New York, 1996), Chap. 8.

    Google Scholar 

  10. P. L. Privalov, E. I. Tiktopulo, S. Yu. Venyaminov, Yu. V. Griko, G. I. Makhatadze, and N. N. Khechinashvili, J. Mol. Biol. 205, 737 (1989).

    Google Scholar 

  11. P. L. Privalov and G. I. Makhatadze, J. Mol. Biol. 213, 385 (1990).

    Google Scholar 

  12. K. P. Murphy and S. J. Gill, J. Chem. Thermodyn. 21, 903 (1989).

    Google Scholar 

  13. A. H. Sijpkes, G. J. van de Kleut, and S. J. Gill, Biophys. Chem. 52, 75 (1994).

    Google Scholar 

  14. L. Abate, B. Palecz, C. Giancola, and G. Della Gatta, J. Chem. Thermodyn. 29, 359 (1997).

    Google Scholar 

  15. R. A. Marriott, A. W. Hakin, and J. L. Liu, J. Solution Chem. 27, 771 (1998).

    Google Scholar 

  16. M. M. Duke, A. W. Hakin, R. M. McKay, and K. E. Preuss, Can. J. Chem. 72, 1489 (1994).

    Google Scholar 

  17. G. S. Kell, J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  18. J. E. Desnoyers, C. De Vissier, G. Perron, and P. Picker, J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  19. G. S. Kell, Water-A Comprehensive Treatise, Vol. 1, F. Franks, ed. (Plenum Press, New York, 1972).

    Google Scholar 

  20. A. W. Hakin, M. M. Duke, S. A. Klassen, R. M. McKay, and K. E. Preuss, Can. J. Chem. 72, 362 (1994).

    Google Scholar 

  21. G. I. Makhatadze, S. J. Gill, and P. L. Privalov, Biophys. Chem. 38, 33 (1990).

    Google Scholar 

  22. S. Cabani, P. Gianni, V. Mollica and L. Lepori, J. Solution Chem. 10, 563 (1981).

    Google Scholar 

  23. A. K. Mishra and J. C. Ahluwalia, J. Phys. Chem. 88, 86 (1984).

    Google Scholar 

  24. S. Cabani, G. Conti, E. Matteoli, and M. R. Tiné J. Chem. Soc. Faraday Trans. 1 77, 2385 (1981).

    Google Scholar 

  25. F. Shahidi and P. G. Farrell, J. Chem. Soc. Faraday Trans. 1, 74, 1268 (1978).

    Google Scholar 

  26. G. I. Makhatadze, V. N. Medvedkin, and P. L. Privalov, Biopolymers 30, 1001 (1990).

    Google Scholar 

  27. T. V. Chalikian, A. P. Sarvazyan, T. Funck, and K. J. Breslauer, Biopolymers 34, 541 (1994).

    Google Scholar 

  28. S. Cabani, G. Conti, and E. Matteoli, Biopolymers 16, 465 (1977).

    Google Scholar 

  29. G. R. Hedwig, private communication (1999).

  30. M. Häckel, H-J. Hinz, and G. R. Hedwig, Science, J. Mol. Biol. 291, 197 (1999).

    Google Scholar 

  31. Y. Maham, L. G. Hepler, A. E. Mather, A. W. Hakin, and R. A. Marriott, J. Chem. Soc. Faraday Trans. 93, 1747 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakin, A.W., Kowalchuck, M.G., Liu, J.L. et al. Thermodynamics of Protein Model Compounds: Apparent and Partial Molar Heat Capacities and Volumes of Several Cyclic Dipeptides in Water. Journal of Solution Chemistry 29, 131–151 (2000). https://doi.org/10.1023/A:1005169114258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005169114258

Navigation