Skip to main content
Log in

A Re-Evaluation of the Abundance of Lutetium in the Sun

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Lutetium is one of the few nonvolatile elements whose solar photospheric abundance departs significantly from that derived from CI chondrites. We have applied the Cowan code to compute new oscillator strengths for Luii, and have included a correction for core polarization. The results have been used in a synthesis of the solar spectrum in the vicinity of features at \(\lambda _ \odot \)3397.062 and\(\lambda _ \odot \)6221.72. We find that the majority of the absorption in the ultraviolet feature is due to NH, making it unsuitable for extracting a reliable lutetium abundance. Our best fit to the low-noise Jungfraujoch spectrum for the weak, nine-component hyperfine Luii line at λ 6221.87 yields an abundance of +0.06 on a scale where log(H) = 12.00. This value is within 0.07 dex of the meteoritic result (+0.13). (These figures reflect the note added in proof below.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C. W.: 1976, Astrophysical Quantities, 3rd ed., Athlone Press, London, p. 172.

    Google Scholar 

  • Anders, E. and Grevesse, N.: 1989, Geochim. Cosmochim. Acta 53, 197.

    Google Scholar 

  • Anderson, J.: 1956, Thesis, Imperial College, London, 89 pp.

  • Andersen, T. and Sørensen, G.: 1974, Solar Phys. 38, 343.

    Google Scholar 

  • Andersen, T., Poulsen, O., Ramanujam, P. S., and Petrakiev Petkov, A.: 1975, Solar Phys. 44, 257.

    Google Scholar 

  • Baylis, W. E.: 1977, J. Phys. B: At. Mol. Phys. 10, L583.

    Google Scholar 

  • Bord, D. J., Barisciano, L. P., Jr., and Cowley, C. R.: 1996, Monthly Notices Roy. Astron. Soc. 278, 997.

    Google Scholar 

  • Bord, D. J., Cowley, C. R., and Norquist, P. L.: 1997, Monthly Notices Roy. Astron. Soc. 284, 869.

    Google Scholar 

  • Bovey, L. F. H. and Pearse, R. W. B.: 1956, U.K. Atomic Energy Research Establishment Rep. AERE C/R 1976, Harwell, 19 pp.

  • Brage, T. and Froese Fischer, C.: 1992, Phys. Scripta 45, 43.

    Google Scholar 

  • Brazier, C. R., Ram, R. S., and Bernath, P. F.: 1986, J. Mol. Spectr. 120, 381.

    Google Scholar 

  • Brix, P. and Kopfermann, H.: 1952, in Landolt-Börnstein, Zahlenwerte und Funktionen, 6th ed., Vol. I, Part 5, Springer-Verlag, Berlin.

    Google Scholar 

  • Corliss, C. H. and Bozman, W. R.: 1962, Experimental Transition Probabilities for Spectral Lines of Seventy Elements, N.B.S. Monograph 53, U.S. Gov. Print. Off., Washington (CB).

    Google Scholar 

  • Cowan, R. D.: 1981, The Theory of Atomic Structure and Spectra, University California Press, Berkeley.

    Google Scholar 

  • Cowan, R. D.: 1995, Programs RCN/RCN2/RCG/RCE, Los Alamos National Laboratory (May 1995).

  • Cowley, C. R.: 1996, in S. J. Adelman, F. Kupka, and W. W. Weiss (eds), Model Atmospheres and Spectrum Synthesis: 5th Vienna Workshop, Astron. Soc. Pacific, San Francisco, p. 170.

    Google Scholar 

  • Cowley, C. R. and Bord, D. J.: 1997, in J. C. Brandt, T. B. Ake, and C. C. Petersen (eds), The Scientific Impact of the Goddard High Resolution Spectrograph, ASP Conf. Series, in press.

  • Cowley, C. R. and Corliss, C. H.: 1983, Monthly Notices Roy. Astron. Soc. 203, 651.

    Google Scholar 

  • Delbouille, L. and Roland, G.: 1995, in A. J. Sauval, R. Blomme, and N. Grevesse (eds), Laboratory and Astronomical High Resolution Spectra, ASP Conf. Series, Vol. 81, p. 32.

  • Den Hartog, E. A., Curry, J. J., Wickliffe, M. E., and Lawler, J. E.: 1998, Solar Phys. 178, 239 (this issue).

    Google Scholar 

  • Duquette, D. W. and Lawler, J. E.: 1982, Phys. Rev. A 26, 330.

    Google Scholar 

  • Fraga, S., Karwowski, J., and Saxena, K. M. S.: 1976, Handbook of Atomic Data, Elsevier, Amsterdam, Table VI(1), p. 323.

    Google Scholar 

  • Goldschmidt, Z. B.: 1968, Thesis, Hebrew University, Jerusalem, 487 pp.

  • Gratton, R. G. and Sneden, C.: 1994, Astron. Astrophys. 287, 927.

    Google Scholar 

  • Grevesse, N.: 1983, Phys. Scripta T8, 49.

    Google Scholar 

  • Grevesse, N. and Blanquet, G.: 1969, Solar Phys. 8, 5.

    Google Scholar 

  • Grevesse, N. and Sauval, A. J.: 1997, private communication.

  • Grevesse, N., Noels, A., and Sauval, A. J.: 1996, in S. Holt and G. Sonnenborn (eds), Cosmic Abundances, ASP Conf. Series, Vol. 99, p. 117 (GNS).

  • Hameed, S.: 1972, J. Phys. B: At. Mol. Phys. 5, 746.

    Google Scholar 

  • Hibbert, A.: 1989, Phys. Scripta 39, 574.

    Google Scholar 

  • Holweger, H. and Müller, E. A.: 1974, Solar Phys. 39, 19.

    Google Scholar 

  • Johnson, W. R.: 1997, private communication.

  • Kurucz, R. L.: 1993, CD-ROM Nos. 15 and 18, Smithsonian Astrophys. Obs., Cambridge, MA.

    Google Scholar 

  • Kurucz, R. L. and Bell, B.: 1995, CD-ROM No. 23, Smithsonian Astrophys. Obs., Cambridge, MA.

    Google Scholar 

  • Kurucz, R. L. and Peytremann, E.: 1975, Smithsonian Astrophys. Obs. Spec. Rept. 362.

  • Lawler, J. E.: 1997, private communication.

  • Lents, J. M.: 1973, J. Quant. Spectr. Radiat. Transfer 13, 297.

    Google Scholar 

  • Litzen, U.: 1997, private communication.

  • Martin, W. C., Zalubas, R., and Hagan, L.: 1978, Atomic Energy Levels-The Rare Earth Elements, NSRDS-NBS 60, U.S. Gov. Print. Off., Washington.

    Google Scholar 

  • McDonough, W. F. and Sun, S.-S.: 1995, Chem. Geol. 120, 223.

    Google Scholar 

  • Migdalek, J. and Baylis, W. E.: 1988, J. Quant. Spectr. Radiat. Transfer 37, 521.

    Google Scholar 

  • Moore, C. E., Minnaert, M. G. J., and Houtgast, J.: 1966, The Solar Spectrum 2935 Å to 8770 Å, N.B.S. Monograph 61, U.S. Gov. Print. Off., Washington (MMH).

    Google Scholar 

  • Nave, G., Johansson, S., Learner, R. C. M., and Brault, J. W.: 1994, Astrophys. J. Suppl. 94, 221.

    Google Scholar 

  • Neckel, H. and Labs, D.: 1984, Solar Phys. 90, 205.

    Google Scholar 

  • Palme, H. and Boynton, W. V.: 1993, in E. H. Levy and J. I. Lunine (eds), Protostars and Planets III, University Arizona Press, Tucson AZ, p. 979.

    Google Scholar 

  • Pinnington, E. H., Livingston, A. E., and Kernahan, J. A.: 1974, Phys. Rev. A 9, 1004.

    Google Scholar 

  • Reader, J. and Corliss, C. H.: 1980, Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Part I. Wavelengths, NSRDS-NBS 68, U.S. Gov. Print. Off., Washington.

    Google Scholar 

  • Sauval, A. J. and Tatum, J. B.: 1984, Astrophys. J. Suppl. 56, 193.

    Google Scholar 

  • Sørensen, G.: 1976, in I. A. Sellin and D. J. Pegg (eds.), Beam-Foil Spectroscopy I. Atomic Structure and Lifetimes, Plenum Press, New York, p. 165.

    Google Scholar 

  • Tsuji, T.: 1973, Astron. Astrophys. 23, 411.

    Google Scholar 

  • Tsuji, T.: 1997, private communication of ‘current’ values of coefficients.

  • Vaeck, N., Godefroid, M., and Froese Fischer, C.: 1992, Phys. Rev. A 46, 3704.

    Google Scholar 

  • Wasson, J. T.: 1985, Meteorites: Their Record of Early Solar System History, Freeman, New York.

    Google Scholar 

  • Wasson, J. T. and Kallemeyn, G. W.: 1988, Phil. Trans. R. Soc. London 325A, 535.

    Google Scholar 

  • Whiting, E. E.: 1973, NASA Tech. Note D-7268.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bord, D.J., Cowley, C.R. & Mirijanian, D. A Re-Evaluation of the Abundance of Lutetium in the Sun. Solar Physics 178, 221–237 (1998). https://doi.org/10.1023/A:1004901023385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004901023385

Keywords

Navigation