Skip to main content
Log in

The solid state chemistry of metakaolin-blended ordinary Portland cement

Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hydration of ordinary Portland cement (OPC) pastes containing 0 and 20% metakaolin was monitored by differential thermal analysis (DTA) and solid state magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The presence of hydrated gehlenite and a relative reduction in calcium hydroxide content of the metakaolin-blended OPC pastes observed by DTA are indicative of the pozzolanic reaction of metakaolin. An increase in the capacity of metakaolin-blended OPC pastes to exclude chloride ions from the pore electrolyte phase, via solid phase binding, has been reported. It is proposed that this increase in chloride binding capacity could be attributed to the participation of calcium aluminate species in the formation of Friedel's salt which would otherwise be engaged in the formation of hydrated gehlenite and other AFm phases. The accelerating effect of replacement additions of metakaolin has been shown by 29Si NMR and was denoted by a comparative increase in the intensity of resonances arising from Q1 and Q2 species compared with that of Q0 species for metakaolin-blended specimens. The primary reactive centres of the pozzolan have been shown to be the 5-coordinate aluminium and amorphous silica. The spreading of the Q4 resonance of the amorphous silica of metakaolin through the Q3 and into the Q2 and Q1 regions of the NMR spectrum during pozzolanic reaction has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. Murat, Cem. Concr. Res. 13 (1983) 259.

    Google Scholar 

  2. Idem., ibid. 13 (1983) 511.

    Google Scholar 

  3. M. Murat and C. Comel, ibid. 13 (1983) 631.

    Google Scholar 

  4. J. Ambroise, M. Murat and J. Pera, Silicates Indus. 9/10 (1989) 165.

    Google Scholar 

  5. P. S. De silva and F. P. Glasser, Adv. Cem. Res. 12 (1990) 167.

    Google Scholar 

  6. P. S. De silva and F. P. Glasser, Cem. Concr. Res. 23 (1993) 627.

    Google Scholar 

  7. J. Ambroise, S. Maximilien and J. Pera, Advanced Cement Based Materials 1(4) (1994) 161.

    Google Scholar 

  8. S. Wild, J. M. Khatib and A. Jones, Cem. Concr. Res. 26 (1996) 1537.

    Google Scholar 

  9. S. Wild and J. M. Khatib, ibid. 27 (1997) 137.

    Google Scholar 

  10. C. L. Page and K. W. J. Treadaway, Nature 297 (1982) 109.

    Google Scholar 

  11. N. J. Coleman and C. L. Page, Cem. Concr. Res. 27 (1997) 147.

    Google Scholar 

  12. R. L. Day, ibid. 18 (1988) 63.

    Google Scholar 

  13. R. F. Feldman and J. J. Beaudoin, ibid. 21 (1991) 297.

    Google Scholar 

  14. H. F. W. Taylor, “Cement Chemistry” (Academic Press Limited, London, 1990) Ch. 6.

    Google Scholar 

  15. A. K. Suryavanshi, J. D. Scantlebury and S. B. Lyon Cem. Concr. Res. 25 (1995) 581.

    Google Scholar 

  16. N. J. Coleman, unpublished data.

  17. J. Rocha, J. M. Adams and J. Klinowski, J. Chem. Soc., Chem. Commun. (1991) 582.

  18. H. F. W. Taylor, “Cement Chemistry” (Academic Press Limited, London, 1990) p. 167.

    Google Scholar 

  19. A. K. Suryavanshi, J. D. Scantlebury and S. B. Lyon, Cem. Concr. Res. 26 (1996) 717.

    Google Scholar 

  20. N. J. Coleman and W.R. Mcwhinnie, in preparation.

  21. N. J. Coleman, PhD Thesis, Aston University, 1996.

  22. H. S. Pietersen, A. P. M. Kentgens, G. H. Nachtegaal, W. S. Veeman and J. M. Bijen, in Istanbul Conference A.C.I. Special Publication SP 123-44 1992, p. 795.

  23. G. Parry-jones, A. H. J. Al-tayyib and A. I. Almana, Cem. Concr. Res. 18 (1988) 229.

    Google Scholar 

  24. E. T. Lippmaa, M. Magi and M. Tarmak, W. Wieker and A. R. Grimmer, ibid. 12 (1982) 597.

    Google Scholar 

  25. J. Hjorth, J. Skibsted and H. J. Jakobsen, Cem. Concr. Res. 18 (1988) 789.

    Google Scholar 

  26. J. Skibsted, J. Hjorth and H. J. Jakobsen, Chem. Phys. Lett 172 (1990) 279.

    Google Scholar 

  27. D. S. Klimesch, G. Lee, A. Rayand M. A. Wilson, Adv. Cem. Res. 10 (1998) 93.

    Google Scholar 

  28. M. Akram and W. R. Mcwhinnie, unpublished data.

  29. J. Skibsted and H. J. Jakobsen, J. Chem. Soc., Faraday Trans 90 (1994) 2095.

    Google Scholar 

  30. E. Lippmaa, M. Magi, A. Samoson, G. Englehardt and A. R. Grimmer, J. Am. Chem. Soc. 102 (1980) 4889.

    Google Scholar 

  31. M. Magi, E. Lippmaa, A. Samoson, G. Englehardt and A. R. Grimmer, J. Phys. Chem. 88 (1984) 1518.

    Google Scholar 

  32. D. Muller, W. Gessner, A. Samoson, E. Lippmaa and G. Scheler, J. Chem. Soc. Dalton Trans. 6 (1986) 1277.

    Google Scholar 

  33. G. M. M. Bell, J. Bensted, F. P. Glasser, E. E. Lachowski, D. R. Roberts and M. J. Taylor, Adv. Cem. Res. 3 (1990) 23.

    Google Scholar 

  34. S. U. Al-dulaijan, A. H. J. Al-tayyib, M. M. Alzahrani, G. Parry-jones and A. I. Al-mana, J. Am. Ceram. Soc. 78 (1995) 342.

    Google Scholar 

  35. A. R. Brough, C. M. Dobson, I. G. Richardson and G. W. Groves, J. Mater. Sci. 30 (1995) 1671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, N.J., Mcwhinnie, W.R. The solid state chemistry of metakaolin-blended ordinary Portland cement. Journal of Materials Science 35, 2701–2710 (2000). https://doi.org/10.1023/A:1004753926277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004753926277

Keywords

Navigation