Skip to main content
Log in

Deposition of diamond coating on pure titanium using micro-wave plasma assisted chemical vapor deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nucleation and growth of diamond coatings on pure Ti substrate were investigated using microwave plasma assisted chemical vapor deposition (MW-PACVD) method. The effects of hydrogen plasma, plasma power, gas pressure and gas ratio of CH4 and H2 on the microstructure and mechanical properties of the deposited diamond coatings were evaluated. Results indicated that the nucleation and growth of diamond crystals on Ti substrate could be separated into different stages: (1) surface etching by hydrogen plasma and the formation of hydride; (2) competition between the formation of carbide, diffusion of carbon atoms and diamond nucleation; (3) growth of diamond crystals and coatings on TiC layer. During the deposition of diamond coatings, hydrogen diffused into Ti substrate forming titanium hydride and led to a profound microstructure change and a severe loss in impact strength. Results also showed that pre-etching of titanium substrate with hydrogen plasma for a short time significantly increased the nuclei density of diamond crystals. Plasma power had a significant effect on the surface morphology and the mechanical properties of the deposited diamond coatings. The effects of gas pressure and gas ratio of CH4 and H2 on the nucleation, growth and properties of diamond coatings were also studied. A higher ratio of CH4 during deposition increased the nuclei density of diamond crystals but resulted in a poor and cauliflower coating morphology. A lower ratio of CH4 in the gas mixture produced a high quality diamond crystals, however, the nuclei density and the growth rate decreased dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sivakumar, K. Suresh, K. Dhanadurai and S. Rajeswari, J. Mater. Sci. Lett. 14(1995) 351–354.

    Google Scholar 

  2. J. B. Park, “Biomaterials Science and Engineering” (Plenum, New York, 1984) pp. 193–233.

    Google Scholar 

  3. K. E. Budinski, Wear 151(1991) 203–217.

    Google Scholar 

  4. N. A. Morrison, I. C. Drumond and C. Garth, Diamond and Related Materials 5 (1996) 1118–1126.

    Google Scholar 

  5. G. Heinrich, T. Grogler, S. M. Rosiwal and R. F. Singer, Surface and Coatings Technology 94/95 (1997) 514–520.

    Google Scholar 

  6. E. Mitura, A. Niedzielska, P. Niedielski, L. Klimek, A. Rylki, S. Mitura, J. Moll and W. Pietrzykowski, Diamond and Related Materials 5 (1996) 998–1001.

    Google Scholar 

  7. W. D. Fan, K. Jagannadham and J. Narayan, Surface and Coatings Technology 91 (1997) 32–36.

    Google Scholar 

  8. D. Rats, L. Vandenbulcke, C. Boher and G. Farges, ibid. 94/95 (1997) 555–560.

    Google Scholar 

  9. A. P. Dementjev and M. N. Petukhov, Diamond and Related Materials 6 (1997) 486–489.

    Google Scholar 

  10. R. Beckmann, S. Reinke, M. Kuhr, W. Kulisch and R. Kassing, Surface and Coatings Technology 60 (1993) 506–510.

    Google Scholar 

  11. D. S. Shih, I. M. Robertson and H. K. Birnbaum, Acta Metall. 36 (1988) 111–124.

    Google Scholar 

  12. H. Numakura and M. Koiwa, ibid. 32 (1984) 1799–1807.

    Google Scholar 

  13. R. E. Shroder, R. J. Nemanich and J. T. Glass, Phys. Rev. B41 (1990) 3738.

    Google Scholar 

  14. W. Wang, K. Liao, J. Gao and A. Liu, Thin Solid Films 215 (1992) 174–178.

    Google Scholar 

  15. Y. Nakamura, S. Sakagami, Y. Amamoto and Y. Watanabe, ibid. 308/309 (1997) 249–253.

    Google Scholar 

  16. M. Ihara, H. Komiyama and T. Okubo, Appl. Phys. Lett. 65(9) (1994) 1192.

    Google Scholar 

  17. H. Liu and D. S. Dandy, Diamond and Related Materials 4 (1995) 1173–1188.

    Google Scholar 

  18. M. Frenklach and H. Wang, Phys. Rev. B43 (1991) 1520.

    Google Scholar 

  19. R. Beckman, S. Reinke, M. Kuhr, W. Kulisch and R. Kassing, Surface and Coatings Technology 60 (1993) 506.

    Google Scholar 

  20. S. S. Park and J. Y. Le, J. Appl. Phys. 69 (1991) 2618–2633.

    Google Scholar 

  21. G. E. Dieter, “Mechanical Metallurgy” (McGraw-Hill, New York, 1986).

    Google Scholar 

  22. T. M. de Souza, N. F. Leite, V. J. Travaairoldi and E. J. Corat, Thin Solid Films 308/309 (1997) 254–257.

    Google Scholar 

  23. F. Silva, A. Gicquel, A. Tardieu, P. Cledat and T. Chauveau, Diamond and Related Materials 5 (1996) 338–344.

    Google Scholar 

  24. X. L. Peng and T. W. Clyne, Thin Solid Films 293 (1997) 261–269.

    Google Scholar 

  25. C. R. Shi, Y. Avyigal, S. Dirnfield, A. Hoffman, A. Fayer and R. Kalish, Diamond and Related Materials 4(1995) 1079–1087.

    Google Scholar 

  26. J. W. Kim, Y. J. Baik and K. Y. Eun, ibid. 1(1992) 200–204.

    Google Scholar 

  27. G. Heinrich, T. Grogler, S. M. Rosiwal, R. F. Singer, R. Stockel and L. Ley, ibid. 5(1996) 304–307.

    Google Scholar 

  28. J. C. Angus and C. C. Hayman, Science 24(1988) 913.

    Google Scholar 

  29. J. Gunnars and A. Alahelisten, Surface and Coatings Technology 80(1996) 303–312.

    Google Scholar 

  30. W. D. Fan, H. Wu, K. Jagannadham and B. C. Goral, ibid. 72(1995) 78–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Yan, B., Loh, N.L. et al. Deposition of diamond coating on pure titanium using micro-wave plasma assisted chemical vapor deposition. Journal of Materials Science 34, 2269–2283 (1999). https://doi.org/10.1023/A:1004569406535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004569406535

Keywords

Navigation