Skip to main content
Log in

The Effect of Al Implantation on the Thermal Oxidation of Stainless Steel in Aggressive Environments

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

AISI-321 steel samples were implanted with Al ions (implantation-energy:40 keV; dose: 2×1017 ions/cm2). Thermal oxidationof the samples was performed at 450, 550, 600, and 650°C for periodsvarying from 1 to 6 days in air and in a corrosive CO2-containingenvironment. Nuclear Reaction Analysis (NRA) and Rutherford BackscatteringSpectrometry (RBS) were used to investigate the oxidized samples. Asignificant improvement of the oxidation resistance of the implantedmaterial in comparison to the nonimplanted material was observed. Thisespecially applies for samples oxidized at high temperatures. The aluminumdepth distribution determined by NRA [using the resonance at 992 keV of the27Al(p, γ )28Si nuclear reaction] and RBS,indicated no variation of the Al profile in the temperature region450–600°C, whereas at 650°C a slight Al diffusion wasobserved. Scanning electron microscopy (SEM–EDS) was applied to studythe surface morphology and the constitution of the oxide scale formed, aswell as to explain the influence of Al implantation on the oxidation behaviorof AISI-321 austenitic stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Bennett, H. E. Bishop, P. R. Chalker, and A. T. Tuson, Mater. Sci. Eng. 90, 177 (1987).

    Google Scholar 

  2. M. Pons, M. Caillet, and A. Galerie, Nucl. Instr. Methods 209/210, 1011 (1983).

    Google Scholar 

  3. F. Noli, P. Misaelides, P. Spathis, M. Pilakouta, and H. Baumann, Nucl. Inst. Methods B68, 398 (1992).

    Google Scholar 

  4. F. Noli, P. Misaelides, G. Giorginis, H. Baumann, and H. Hausner, Nucl. Inst. Methods B113, 171 (1996).

    Google Scholar 

  5. W. Ensinger and G. K. Wolf, Mater. Sci. Eng. A116, 1 (1989).

    Google Scholar 

  6. M. Pons, A. Galerie, and M. Caillet, Defect Diffusion Forum 57-58, 189 (1988).

    Google Scholar 

  7. A. Galerie, Ion implantation into Metals (Pergamon, Oxford, 1982), p. 190.

    Google Scholar 

  8. Per Kofstad, High Temperature Corrosion (Elsevier Applied Science, New York, 1990).

    Google Scholar 

  9. A. Rahmel-W. Schwenk, Korrosion und Korrosionsschutz von Stahlen (Verlag Chemie, Weinheim, 1977).

    Google Scholar 

  10. R. W. Cahn and P. Haasen, Physical Metallurgy (Elsevier, New York, 1983), p. 154.

    Google Scholar 

  11. Metals Handbook, 8th edn (American Society of Metals, Metals Park, OH, 1985), p. 1213.

  12. R. M. Hausner, H. Baumann, K. Bethge, F. Noli, and P. Misaelides, Mat. Sci. Forum, 248-249, 193 (1997).

    Google Scholar 

  13. F. Noli, P. Misaelides, and K. Bethge, Nucl. Inst. Methods B139, 322 (1998).

    Google Scholar 

  14. L. R. Doolittle, Nucl. Instr. Methods B9, 344 (1985).

    Google Scholar 

  15. L. R. Doolittle, Nucl. Instr. Methods B15, 227 (1986).

    Google Scholar 

  16. P. J. Nolan, P. Banks and S. K. Lister, in Behaviour of High Temperature Alloys in Aggressive Environments (Petten, The Netherlands, 1979), p. 705.

    Google Scholar 

  17. S. J. Allan and M. J. Dean, in Behaviour of High Temperature Alloys in Aggressive Environments (Petten, The Netherlands, 1979), p. 219.

    Google Scholar 

  18. H. J. Grabke, R. Dennert, and B. Wagemann, Oxid. Met. 47, 495 (1997).

    Google Scholar 

  19. P. Tomaszewicz and G. R. Wallwork, Rev. High Temp. Mater. p. 5 (1982).

  20. A. Andoh, S. Taniguchi, and T. Shibata, Oxid. Met. 46, 481 (1996).

    Google Scholar 

  21. M. J. Bennett and D. P. Moon, in Proc. Euro. Colloq. E. Lang, ed., Commission of the European Communities, Directorate General: Science, Research and Development, Institute of Advanced Materials, Joint Research Centre, Petten, The Netherlands, 12-13 Dec., 1988, p. 111.

    Google Scholar 

  22. G. Beranger, F. Armanet, and M. Lambertinin, in Proc. Europ. Colloq., E. Lang, ed., Commission of the European Communities, Directorate General: Science, Research and Development, Institute of Advanced Materials, Joint Research Centre, Petten, The Netherlands, 12-13 Dec., 1988, p. 33.

    Google Scholar 

  23. F. H. Stott, in Proc. Europ. Colloq., E. Lang, ed., Commission of the European Communities, Directorate General: Science, Research and Development, Institute of Advanced Materials, Joint Research Centre, Petten, The Netherlands, 12-13 Dec., 1988, p. 1.

    Google Scholar 

  24. P. Kofstad, in Proc. Europ. Colloq., E. Lang, ed., Commission of the European Communities, Directorate General: Science, Research and Development, Institute of Advanced Materials, Joint Research Centre, Petten, The Netherlands, 12-13 Dec., 1988, p. 367.

    Google Scholar 

  25. S. Ghosh, A. Prodhan, O. N. Mohanty, and A. K. Chakradarti, Oxid. Met. 45, 109 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noli, F., Misaelides, P., Giorginis, G. et al. The Effect of Al Implantation on the Thermal Oxidation of Stainless Steel in Aggressive Environments. Oxidation of Metals 53, 303–323 (2000). https://doi.org/10.1023/A:1004541220830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004541220830

Navigation