Skip to main content
Log in

Determination of the oxygen reduction products on ASTM A516 steel during cathodic protection

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemistry of steel in aerobic and anaerobic aqueous alkaline solutions was studied with or without forced convection to investigate the cathodic processes occurring on steel exposed by defects in polymer coated steel pipe. The results are relevant to the mechanistic understanding of the effect of cathodic protection on the disbonding of fusion bonded epoxy (FBE) coatings on steel. Moderate (pH9.8) and strongly (pH14) alkaline aqueous solutions were used to simulate the water layers at the cathodically polarized steel surface on the soil-side of buried pipe. A rotating gold ring and steel disc electrode (RRDE) in alkaline aqueous electrolyte equilibrated with 1atm oxygen over solution was used to measure the rotation rate dependent current for the electroreduction of oxygen, O2, on an ASTM A516 steel disc and the resulting peroxide generation, which was determined by monitoring the oxidation current on the gold ring. An appreciable fraction of the oxygen reduction current on the steel disk gave rise to peroxide generation over a wide range of potentials, from −0.2 to −0.9V vs SCE in 1M KOH. The observation of peroxide generation is noteworthy, because oxidizing agents, such as peroxide and its decomposition products, superoxide and hydroxy radical, can degrade the polymers used for coating pipelines. As result, oxidative degradation of polymer or interfacial compounds may be a cause of the accelerated disbonding observed for protective coatings on steel pipelines under cathodic protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Jovancicevic and J. Bockris, J. Electrochem. Soc. 9 (1986) 1797.

    Google Scholar 

  2. S. Zecevic, D. Drazic and S. Gojkovic, J. Electroanal. Chem. 265 (1989) 179.

    Google Scholar 

  3. H. Wroblowa and S. Qaderi ibid. 279 (1990) 231.

    Google Scholar 

  4. H. Leidheiser and W. Wang, J. Coatings Technol. 53 672 (1981) 77.

    Google Scholar 

  5. J. H. Payer, B. Trautman and D. Gervasio, in Proceedings of CORROSION’93, Paper 579 (1993).

  6. W. Latimer, ‘Oxidation Potentials’, Prentice Hall, New York (1938), chapter 4.

    Google Scholar 

  7. E. Yeager, Electrochim. Acta 29 (1984) 1527; E. Yeager, Prog. in Batteries and Solar Cells 3 (1980) 238.

    Google Scholar 

  8. M. Tarasevich, A. Sadkowski and E. Yeager, ‘Oxygen Electrochemistry’, in ‘Comprehensive Treatise of Electrochemistry’, Vol. 6, (edited by B. Conway, J. Bockris, E. Yeager and R. White), Plenum Press (1984).

  9. C. Mortimer, ‘Chemistry a Conceptual Approach’, 2nd edn, Van Nostrand Reinhold Co., NewYork (1971), pp. 128–9.

    Google Scholar 

  10. J. R. Churchill, Trans. Electrochem. Soc. 76 (1939) 341.

    Google Scholar 

  11. P. Delahay, J. Electrochem. Soc. 97 (1950) 205.

    Google Scholar 

  12. S. A. Olszowka, M. A. Manning and A. Barkatt, Corrosion 48 (1992) 411.

    Google Scholar 

  13. D. Gervasio and J. H. Payer, “Paper presented at the Spring Meeting of the Electrochemical Society”, St. Louis, MI, Extended Abstract 92-2 (1992) 56.

  14. W. Barb, J. Baxendale, P. George and K. Hargrave, Trans. Faraday Soc. 47 (1951) 462.

    Google Scholar 

  15. R. C. Weast (Ed.), ‘Handbook of Chemistry and Physics’, 55th edn, CRC Press, Cleveland, OH (1984).

    Google Scholar 

  16. W. Albery and S. Bruckenstein, Trans. Faraday Sac. 28 (1966) 1920.

    Google Scholar 

  17. J. Ritter and J. Kruger, Surf. Sci. 96 (1980) 364.

    Google Scholar 

  18. A. Bewick, M. Kalaji and G. Larramona, J. Electroanal. Chem. 318 (1991) 207. H. Neugebauer, A. Moser, P. Strecha and A. Neckel, J. Electrochem. Soc. 137 (1990) 1475.

    Google Scholar 

  19. N. Vilambi and E. Taylor, J. Electroanal. Chem. 270 (1989) 61.

    Google Scholar 

  20. R. Zurilla, R. Sen and E. Yeager, J. Electrochem. Soc. 125 (1978) 1103.

    Google Scholar 

  21. M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solutions’, Cebelcor, Brussels (1974).

    Google Scholar 

  22. I. Song, D. Gervasio and J. H. Payer, J. Appl. Electrochem. 26 (1996) 1045.

    Google Scholar 

  23. K. Gubbins and R. Walker, J. Electrochem. Soc. 112 (1965) 469.

    Google Scholar 

  24. A. Yatskovskii and N. Fedotov, Elecktrokhimiya 5 (1969) 1052.

    Google Scholar 

  25. J. Parks and H. Leidheiser, Ind. Eng. Chem. Prod. Res. Dev. 25 (1986) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervasio, D., Song, I. & Payer, J.H. Determination of the oxygen reduction products on ASTM A516 steel during cathodic protection. Journal of Applied Electrochemistry 28, 979–992 (1998). https://doi.org/10.1023/A:1003451418717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003451418717

Navigation