Skip to main content
Log in

The appearance and possible role of plasminogen activator of urokinase type (u-PA) activity in the cornea related to soft contact lens wear in rabbits

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

This is the first study in which u-PA activity is detected in situ during SCL wear. The histochemical localization of u-PA activity is done by the methods of Lojda using unfixed cryostat sections on semipermeable membranes and a gel incubation medium containing sensitive substrates with the 7-amino-4-trifluoromethylcoumarin (AFC) (Enzyme Systems Products, Sierra Lane, Dublin, CA, USA) leaving groups. Z-Gly-GIy-Arg-AFC and Glut-Gly-Arg-AFC were employed as the substrates. The results show that in the normal cornea u-PA activity is absent. Also the wearing of SCL does not evoke the appearance of u-PA activity in the cornea within the first three days. On day 4 the first u-PA activity appears; it is located in the superficial layers of the corneal epithelium. On day 7 of SCL wear, u-PA activity is present in all layers of the corneal epithelium and (to a lesser extent) also in the comeal endothelium; keratocytes of the corneal stroma are only slightly active for u-PA. Extended SCL wear (for two weeks) leads to an increase of u-PA activity in keratocytes beneath the epithelium. Also, some inflammatory cells (mainly polymorphonuclear leukocytes, PMNs) present in the corneal stroma are enzymatically active. After three weeks of SCL wear the number of PMNs in the corneal stroma increases; some PMNs are highly active for u-PA. In the corneal endothelium the u-PA activity is also highly pronounced. It can be concluded that extended SCL wear leads to the gradual increase of u-PA activity in the rabbit cornea. It is suggested that active u-PA is involved in the corneal damage related to SCL wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tervo T, Van Setten GB, Andersson R, Salonen E-M, Vaheri A, Immonen I, Tarkkanen A. Contact lens wear is associated with the appearance of plasmin in the tear fluid: preliminary results. Graefes Arch Clin Exp Ophthalmol 1989; 227: 42–4.

    Article  PubMed  CAS  Google Scholar 

  2. Van Setten GB, Tervo T, Andersson R, Perheentupa J, Tarkkanen A. Plasmin and epidermal growth factor in the tear fluid of contact-lens wearers: effect of wearing different types of contact lenses and association with clinical findings. Ophthalmic Res 1990; 22: 233–40.

    PubMed  CAS  Google Scholar 

  3. Čejková J, Lojda Z, Vacik J, Digenis JA, Dročová S. Histochemical changes in the rabbit cornea and plasmin activity in the tear fluid during contact lens wear. Favourable influence of protease inhibitors (aprotinin, PCS, elastatinal). Histochemistry 1992; 97: 69–76.

    Article  PubMed  Google Scholar 

  4. Vannas A, Sweeney FD, Holden BA, Sapyska E, Salonen E-M, Vaheri A. Tear plasmin activity with contact lens wear. Current Eye Res 1992; 11: 243–51.

    CAS  Google Scholar 

  5. Collen D. On the regulation and control of fibrinolysis. Thromb Haemostas 1980; 43: 77–89.

    CAS  Google Scholar 

  6. Tripathi BJ, Geanon JD, Tripathi RC. Distribution of tissue plasminogen activator in human and monkey eyes: an immunohistochemical study. Ophthalmology 1987; 94: 1434–8.

    PubMed  CAS  Google Scholar 

  7. Tripathi RC, Park JK, Tripathi BJ. Tissue plasminogen activator synthesis by trabecular cells and its implication for fibrinolytic therapy of the eye. Drug Dev Res 1989; 18: 245–53.

    Article  CAS  Google Scholar 

  8. Saksela O. Plasminogen activation and regulation of pericellular proteolysis. Biochim Biophys Acta 1985; 823: 35–65.

    PubMed  CAS  Google Scholar 

  9. Blasi F, Vassalli J-D, Dano K. Urokinase-type plasminogen activator; proenzyme, receptor, and inhibitors. J Cell Biol. 1987; 104: 801–4.

    Article  PubMed  CAS  Google Scholar 

  10. Barlati 5, Marchina E, Quaranta CA, Vigasio F, Semeraro F. Analysis if fibronectin, plasminogen activators and plasminogen in tear fluid as markers of corneal damage and repair. Exp Eye Res 1990; 51: 1–9.

    Article  PubMed  CAS  Google Scholar 

  11. Vaheri, A, Bizik, J, Salonen, E-M, Tapiovaara, H, Sirén, V, Myohanen, H, Stephens, RW. Regulation of the pericellular activation of plasminogen and its role in tissue-destructive processes. Acta Ophthalmologica 1992, Suppl. 202: 34–41.

    Article  PubMed  Google Scholar 

  12. Tripathi RC, Tripathi BJ, Park JK. Localization of urokinase-type plasminogen activator in human eyes: an immunocytochemical study. Exp Eye Res 1990; 51: 545–52.

    Article  PubMed  CAS  Google Scholar 

  13. Lojda Z, Gossrau R, Stoward P. Proteases. In Stoward, PJ and Pearse AGE (Eds). Histochemistry. Theoretical and applied, 4th ed, Vol 3, Churchill Livingstone, Edinburgh, London, Melbourne, New York and Tokyo, 1991; pp. 281–335.

    Google Scholar 

  14. Kennett CN, Cox SW, Elley BM. Comparative histochemical, biochemical and immun-ocytochemical studies of cathepsin B in human gingiva. J Periodont Res 1994; 29: 201–13.

    Google Scholar 

  15. Lojda Z. The use of substrates with 7-amino-4-trifluoromethylcoumarmne (AFC) leaving group in the localization of protease activities in situ. Acta histochem 1996; 98: 215–28.

    PubMed  CAS  Google Scholar 

  16. čejková J, Lojda Z. The appearance of active plasminogen activator of urokinase type (u-PA) in the rabbit anterior eye segment irradiated by UVB rays. A histochemical and biochemical study. Acta histochemica 1995; 97: 257–62.

    PubMed  Google Scholar 

  17. čejková J. The distinguishing between active plasminogen activators (PAs) and plasmin using sensitive substrates containing the leaving group 7-amino-4-trifluoromethylaminocoumarin (AFC) and enzyme inhibitors. Acta Histochemica et Cytochemica 1996; 29: (Supplement) 613–4.

    Google Scholar 

  18. Raap AK. Localization properties of fluorescence cytochemical enzyme procedures. Histochemistry 1986; 84: 317–21.

    Article  PubMed  CAS  Google Scholar 

  19. Smith RE, Reynolds CJ, Elder EA. The evolution of proteinase substrates with special reference to dipeptidylpeptidase IV. Histochemical J. 1992; 24: 637–47.

    Article  CAS  Google Scholar 

  20. Lojda Z, Gossrau R, Schiebler TH. Enzyme Histochemistry. A laboratory manual. Springer,Berlin, Heidelberg, New York, 1979.

    Google Scholar 

  21. Čejková J. Histochemical study of leukocyte elastase activity in alkali burned rabbit cornea. Ophthalmic Res, 1997; 29: 154–60.

    PubMed  Google Scholar 

  22. Huseby RM, Clavin SA, Smith RE, Hull RN, Smithwick Jr EL. Studies on tissue culture plasminogen activator II. The detection and assay of urokinase and plasminogen activator from LLC-PK, cultures (porcine) by the synthetic substrate Na-benzyloxycarbonylglycly-glycly-arginyl-4-methoxy-2-naphthylamide. Thrombosis Res 1977; 10: 679–86.

    Article  CAS  Google Scholar 

  23. Berman M, Leary R, Gage J. Evidence for a role of the plasminogen activator-plasmin system in corneal ulceration. Invest Ophthalmol Vis Sci 1980; 19: 1204–21.

    PubMed  CAS  Google Scholar 

  24. Berman M, Hayashi K, Young E, Pease S, Smith D, EI-Ghatit A, Askew M, Cragoe Jr EJ. Urokinase-like plasminogen activator, corneal epithelial migration and defect formation. Invest Ophthalmmol Vis Sci 1989; 30: (Suppl); 2.

    Google Scholar 

  25. Hayashi, K, Berman, M, Smith, D, El-Ghatit, A, Pease, S, Kenyon, KR. Pathogenesis of corneal epithelial defects: role of plasminogen activator. Current Eye Res 1991; 10: 38 1–98.

    Google Scholar 

  26. Pandolfi M, Lantz E. Partial purification and characterization of keratokinase, the fibrinolytic activator of the cornea. Exp Ey Res 1979; 29: 563–71.

    Article  CAS  Google Scholar 

  27. Lojda Z, čejková, J. Biochemical and histochemical studies of plasminogen activator of urokinase type. I. A simple rapid semiquantitative method for its detection in the tear fluid. Acta histochem 1993; 95, 232–7.

    PubMed  CAS  Google Scholar 

  28. Gilboa N, Vullannueva G, Fenton J. Inhibition of fibrinolytic enzymes by thrombin inhibitors. Enzyme 1988; 40: 144–148.

    PubMed  CAS  Google Scholar 

  29. Vassali J-D, Belin D. Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Letters; 214: 187–91.

  30. Schuman MA. Merkel CH. Urokinase binding to bovine corneal endothelial cells. Exp Eye Res 1985; 41: 371–82.

    Google Scholar 

  31. Wang H-M, Berman M, Law M. Latent and active plasminogen activator in corneal ulceration. Invest Ophthalmol Vis Sci 1985; 26: 511–24.

    PubMed  CAS  Google Scholar 

  32. Lantz E, Pandolfi M. Fibrinolysis in cornea and conjunctiva: evidence of two types of activators. Albrecht von Graefes Arch Klin Exp Ophthalmol 1986; 224: 393–6.

    CAS  Google Scholar 

  33. Geanon JD, Tripathi BJ, Tripathi RC, Barlow GH. Thissue plasminogen activator in avascular tissues of the eye: a quantitative study of its activity in the cornea, lens, and aqueous and vitreous humors of dog, calf and monkey. Exp Eye Res 1987; 44: 55–63.

    PubMed  CAS  Google Scholar 

  34. Ichinose A, Fujikawa K, Suyama T. The activation of prourokinase by plasma kallikrein and its activation by thrombin. J Biol Chem 1986; 261: 3486–89.

    PubMed  CAS  Google Scholar 

  35. Gilboa N, Neumann P, Gutmann JM, Del Vecchio PJ, Gudewicz P. Evidence for regulation of endothelial plasminogen-activating systems by polymorphonuclear leukocyte elastase. Thromb Res 1989; 54: 467–75.

    Article  PubMed  CAS  Google Scholar 

  36. Kobayashi H, Schmitt M, Goretzki L, Chucholowski N, Calvete J, Kramer M, Günzler WA, Jänicke F, Graeff H. Cathepsin B efficientyl activates the soluble and tumor receptor-bound form of the proenzyme urokinase-type plasminogen activator (pro-uPA). J Biol Chem 1991; 266: 5147–52.

    PubMed  CAS  Google Scholar 

  37. Stephens RW, Pöllänen J, Tapiovaara H, Leung K, Sim PS, Salonen E-M, Ronne E, Behrendt N, Dano K, Vaheri A. Activation of pro-urokinase and plasminogen on human sarcoma cells: a proteolytic systems with surface-bound reactants. J Cell Biol 1989; 108: 1987–95.

    Article  PubMed  CAS  Google Scholar 

  38. Holden BA, Sweeney DF, Vannas A, Nilsson KT, Efron N. Effects of long-term extended contact lens wear on the human cornea. Invest. Ophthalmol Vis Sci 1985; 26: 1489–1501.

    PubMed  CAS  Google Scholar 

  39. Holden BA, Vannas A, Nilssson K. Epithelial and endothelial effects from extended wear of contact lenses. Current Eye Res 1986; 4, 739–42.

    Google Scholar 

  40. Čejková J, Lojda Z, Brůinová B, Vacik J, Michalek J. Disturbances in the rabbit cornea after short-term and long-term wear of hydrogel contact lenses.. Usefulness of histochemical methods. Histochemistry 1988; 89: 91–7.

    Article  PubMed  Google Scholar 

  41. Čejková J, Lojda Z, Vacik J, Digenis G-A, Dropčová S. Histochemical changes in the rabbit cornea and plasmin activity in the tear fluid during contact lens wear. Favourable influence of protease inhibitors (aprotinin, PCS, elastatinal). Histochemistry 1992; 97: 69–72.

    Article  PubMed  Google Scholar 

  42. Madigan MC, Holden BA. Reduced epithelial adhesion after extended contact lens wear correlates with reduced hemidesmosome density in cat cornea. Invest Ophthalmol Vis Sci 1992; 33: 3 14–23.

    Google Scholar 

  43. Nieuwendaal CP, Odenthal MTP, Kok JHC, Venema HW, Oosting J, Riemslag FCC, Kijlstra A. Morphology and function of the corneal endothelium after long-term contact lens wear. Invest Ophthalmol Vis Sci 1994; 35: 3071–7.

    PubMed  CAS  Google Scholar 

  44. Adams CP, Cohen E Jr, Laibson PR, Galantine P, Arentsen JJ. Corneal ulcers in patients with cosmetic extended-wear contact lenses. Am J Ophthalmol 1983; 96: 705–16.

    PubMed  Google Scholar 

  45. Kirkiand C, Lamberts DW. Marginal corneal ulcers. Curr Eye Res 1985; 4: 736–7.

    Google Scholar 

  46. Alfonso E, Mandelbaum S, Fox MJ, Forster RK. Ulcerative keratitis associated with contact lens wear. Am J Ophthalmol 1986; 101: 429–33.

    PubMed  CAS  Google Scholar 

  47. Tomlinson A, Hans FD. Changes in corneal thickness and circumcorneal vascularization with contact lens wear. Int Contact Lens Clinic 1980; 7: 45–52.

    Google Scholar 

  48. Nirankari VS, Karesh J, Lakhanpal V, Richards RD. Deep stromal vascularization associated with cosmetic daily wear contact lenses. Arch Ophthalmol 1983; 103: 47–57.

    Google Scholar 

  49. Madigan MC, Penfold PL, Holden BA, Billson FA Ultrastructural features of contact lens-induced deep corneal neovascularization and associated stromal leukocytes. Cornea 1990; 9: 144–51.

    PubMed  CAS  Google Scholar 

  50. Masters BR. Effects of contact lenses on the oxygen concentration and epithelial mitochondrial redox state of rabbit cornea measured noninvasively with an optically sectioning redox fluorometer microscope. In: The Cornea: Transactions of the World Congress on the Cornea III. ed. by H.D. Cavanagh, Raven Press, Ltd., New York, 1988; pp. 281–6.

    Google Scholar 

  51. Wilson G. The effect of hypoxia on the shedding rate of the corneal epithelium. Current Eye Res 1994; 13: 409–13.

    CAS  Google Scholar 

  52. Klyce SD. Stromal lactate accumulation can account for corneal oedema osmotically following epithelial hypoxia in the rabbit. J Physiol 1981; 321: 49–63.

    PubMed  CAS  Google Scholar 

  53. Thoft RA, Friend J. Biochemical aspects of contact lens wear. Am J Ophthalmol 1975; 80: 130–40.

    Google Scholar 

  54. Kilp H. Metabolites and enzymes in the corneal epithelium after extended contact lens wear. Curr Eye Res 1985; 4: 738–9.

    PubMed  CAS  Google Scholar 

  55. Ruben M, Brown N, Lobascher D, Chaston J, Morris J. Clinical manifestation secondary to contact lens wear. Br J Ophthalmol 1976; 60: 529–31.

    PubMed  CAS  Google Scholar 

  56. Kersley HJ, Kerr C, Pierse D. Hydrophilic lenses for 'continuous wear' in aphakia: definitive fitting and the problems that occur. Brit J Ophthalmol 1977; 61: 38–42.

    CAS  Google Scholar 

  57. Lobman LE. Corneal epithelial response to contact lens wear. Clao J 1986; 12: 153–6.

    Google Scholar 

  58. Tervo T, Van Setten G-B, Anderson R, Vaheri A, Immonen I, Tarkkanen A. Contact lens wear is associated with the appearance of plasmin in the tear fluid-preliminary results. Graefes Arch Clin Exp Ophthalmol 1989; 227: 42–4.

    Article  PubMed  CAS  Google Scholar 

  59. Van Setten GB, Tervo T, Andersson R, Perheentupa J, Tarkkanen A. Plasmin and epidermal growth factor in the tear fluid of contact-lens wearers: Effect of wearing different types of contact lenses and association with clinical findings. Ophtahlmic Res 1990; 22: 233–40.

    Article  CAS  Google Scholar 

  60. Vannas A, Sweeney DF, Holden BA, Sapyska E, Salonen E-M, Vaheri A. Tear plasmin activity with contact lens wear. Curr Eye Res 1992; 11: 259–84.

    Google Scholar 

  61. Barlati S, Marchina E, Quaranta CA, Vigasio F, Semerano F. Analysis of fibronectin, plasminogen activators and plasminogen in the tear fluid as markers of corneal damage and repair. Exp Eye Res 1989; 51: 1–9.

    Article  Google Scholar 

  62. Granelli-Piperno A, Vassali J-D, Reich E. Secretion of plasminogen activator by human polymorphonuclear leukocytes. Modulation by glucocorticoids and other effectors. J Exp Med 1977; 146: 1693–1706.

    Article  PubMed  CAS  Google Scholar 

  63. Reich E. Activation of plasminogen: a general mechanism for producing localized extracellular proteolysis. In: Molecular basis of biological degradative processes. Berlin R, Hermann H, Lepow I, Tanzer J (eds). Academic Press, New York. 1978; pp. 155–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čejková, J. The appearance and possible role of plasminogen activator of urokinase type (u-PA) activity in the cornea related to soft contact lens wear in rabbits. Doc Ophthalmol 95, 165–179 (1998). https://doi.org/10.1023/A:1001800130446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001800130446

Navigation