Skip to main content
Log in

Investigation of electroless plating of Ni–W–P alloy films

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electroless deposition of Ni–W–P alloy coatings onto metal substrates using H2PO2 as reducing agent from solutions containing nickel sulfate, sodium tungstate, sodium citrate, ammonium sulfate and other additives was studied. At most temperatures (60–80 °C) and pHs (7–11) investigated, bright and coherent coatings uniform in appearance were produced. Phosphorous and tungsten contents ranging from 3.5 to 8 wt % and 0.5 to 6 wt %, respectively, were obtained depending upon solution temperature and pH. Trends such as the effects of pH and temperature on average metal deposition rate and the P content in the alloy are similar to that reported previously for the Ni–P system. Correlation of open-circuit potentials with events occurring at the electrode surface in different solutions and polarization curves provide strong evidence that Ni2+ ions participate in W and P deposition, H2 evolution and H2PO2 oxidation and that H2PO2 ions participate in cathodic reduction. This indicates that the partial reactions for the Ni–W–P system do not occur independently of one another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.O. Mallory and J.B. Hajdu, ‘Electroless plating: Fundamentals and Applications’, (AESF, Orlando, FL, 1990).

    Google Scholar 

  2. Y. Okinaka and T. Osaka, in H. Gerischer and C.W. Tobias (Eds), ‘Advances in Electrochemical Science and Engineering’, Vol. 3, (VCH, Weinheim/New York, 1994), p. 55.

    Google Scholar 

  3. N. Takano, N. Hosoda, T. Yamada and T. Osaka, Electrochim. Acta 44 (1999) 3743.

    Google Scholar 

  4. S. Zhang, J. De Baets, M. Vereeken, A. Vervaet and A. Van Calster, J. Electrochem. Soc. 146 (1999) 2870.

    Google Scholar 

  5. T. Osaka, T. Misato, J. Sato, H. Akiya, T. Homma, M. Kato, Y. Okinaka and O. Yoshioka, J. Electrochem. Soc. 147 (2000) 1059.

    Google Scholar 

  6. S.Z. Chu, M. Sakairi, H. Takahashi, K. Simamura and Y. Abe, J. Electrochem. Soc. 147 (2000) 2181.

    Google Scholar 

  7. T. Homma, Y. Kita and T. Osaka, J. Electrochem. Soc. 147 (2000) 4138.

    Google Scholar 

  8. M.C. Zhang, E.T. Kang, K.G. Neoh and K.L. Tan, J. Electrochem. Soc. 148 (2001) C71.

    Google Scholar 

  9. À. Révész, J. Lendvai, J. Lóránth, J. Pádár and I. Bakonyi, J. Electrochem. Soc. 148 (2001) C715.

    Google Scholar 

  10. F.P. Perlstein, R.F. Weightman and R. Wick, Met. Fin. 61 (1963) 77.

    Google Scholar 

  11. Y.-S. Kim, S. Lopatin and Y. Shacham-Diamand, in Proceedings of the 1997 IEEE/Cornell Conference on ‘Advanced Concepts in High Speed Semiconductor Devices and Circuits’, 4-6, Aug. 1997, Ithaca, NY (1997), pp. 192-200.

    Google Scholar 

  12. Y. Shacham-Diamand, Y. Sverdlov and N. Petrov, J. Electrochem. Soc. 148 (2001) C162.

    Google Scholar 

  13. L.M. Abrantes and J.P. Correia, J. Electrochem. Soc. 141 (1994) 2356.

    Google Scholar 

  14. M. Ebn Touhami, M. Cherkaoui, A. Srhiri, A. Ben Bachir and E. Chaissaing, J. Appl. Electrochem. 26 (1996) 487.

    Google Scholar 

  15. M. Ebn Touhami, E. Chaissaing and M. Cherkaoui, Electrochim. Acta 43 (1998) 1721.

    Google Scholar 

  16. L.M. Abrantes and M.C. Oliveira, Electrochim. Acta 41 (1996) 1703.

    Google Scholar 

  17. N. Petrov, Y. Sverdlov and Y. Shacham-Diamand, J. Electrochem. Soc. 149 (2002) C187.

    Google Scholar 

  18. K.M. Gorbunova, M.V. Ivanov and V.P. Moiseev, J. Electrochem. Soc. 120 (1973) 613.

    Google Scholar 

  19. Z. Jusys, J. Liaukonis and A. Vaškelis, J. Electroanal. Chem. 325 (1992) 247.

    Google Scholar 

  20. I. Genutiene, J. Lenkaitiene, Z. Jusys and A. Luneckas, J. Appl. Electrochem. 26 (1996) 118.

    Google Scholar 

  21. W. Blum and G. Hogaboom, ‘Principles of Electroplating and Electroforming (Electrotyping)’, 3rd edn. (McGraw-Hill, New York, 1949), p. 349.

    Google Scholar 

  22. F.A. Lowenheim, ‘Electroplating’, (McGraw-Hill, New York, 1978), p. 142.

    Google Scholar 

  23. A. Brenner, ‘Electrodeposition of Alloys, Principles and Practices’, Vol. 2 (Academic Press, New York, 1963), p. 457.

    Google Scholar 

  24. L.M. Abrantes, M.C. Oliveira, J.P. Correia, A. Bewick and M. Kalaji, J. Chem. Soc., Faraday Trans. 93 (1997) 1119.

    Google Scholar 

  25. E.J. Podlaha and D. Landolt, J. Electrochem. Soc. 144 (1997) 1672.

    Google Scholar 

  26. I. Ohno, Mater. Sci. Eng. A146 (1991) 33.

    Google Scholar 

  27. L.D. Burke and B.H. Lee, J. Appl. Electrochem. 22 (1992) 48.

    Google Scholar 

  28. R. Stevanovic, J. Stevanovic and A. Despic, J. Appl. Electrochem. 31 (2001) 855.

    Google Scholar 

  29. A.H. Gafin and S.W. Orchard, J. Appl. Electrochem. 22 (1992) 830.

    Google Scholar 

  30. T. Homma, I. Komatsu, A. Tamaki, H. Nakai and T. Osaka, Electrochim. Acta 47 (2001) 47.

    Google Scholar 

  31. C. Wagner and W. Traud, Z. Elektrochem. 44 (1938) 391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pritzker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, N., Pritzker, M. Investigation of electroless plating of Ni–W–P alloy films. Journal of Applied Electrochemistry 33, 1001–1009 (2003). https://doi.org/10.1023/A:1026231532006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026231532006

Navigation